Displaying 741 – 760 of 914

Showing per page

The Słodkowski spectra and higher Shilov boundaries

Vladimír Müller (1993)

Studia Mathematica

We investigate relations between the spectra defined by Słodkowski [14] and higher Shilov boundaries of the Taylor spectrum. The results generalize the well-known relation between the approximate point spectrum and the usual Shilov boundary.

The weak Phillips property

Ali Ülger (2001)

Colloquium Mathematicae

Let X be a Banach space. If the natural projection p:X*** → X* is sequentially weak*-weak continuous then the space X is said to have the weak Phillips property. We present several characterizations of the spaces having this property and study its relationships to other Banach space properties, especially the Grothendieck property.

Théorèmes de structure sur certaines algèbres m-convexes commutatives.

Z. Abdelali, M. Chidami (2000)

Extracta Mathematicae

Nous donnons dans ce travail une caractérisation des algèbres (semi-simples) localement-convexes complètes faiblement topologisées au sens de S. Warner, ce qui clarifie, entre autres, plusiers résultats données sur certaines classes d'algèbres à base étudiées par de nombreux auteurs ([2], [6], [7]) pour approcher le problème de E. A. Michael sur la continuité des caractères dans les algèbres de Fréchet [9].

Theorems of Korovkin type for adapted spaces

Heinz Bauer (1973)

Annales de l'institut Fourier

It is shown that the methods developed in an earlier paper of the author about a Dirichlet problem for the Silov boundary [Annales Inst. Fourier, 11 (1961)] lead in a new and natural way to the most important results about the convergence of positive linear operators on spaces of continuous functions defined on a compact space. Choquet’s notion of an adapted space of continuous functions in connection with results of Mokobodzki-Sibony opens the possibility of extending these results to the case...

Thin sequences in the corona of H ∞

Dimcho Stankov, Tzonio Tzonev (2013)

Open Mathematics

In this paper we consider several conditions for sequences of points in M(H ∞) and establish relations between them. We show that every interpolating sequence for QA of nontrivial points in the corona M ( H ) 𝔻 of H ∞ is a thin sequence for H ∞, which satisfies an additional topological condition. The discrete sequences in the Shilov boundary of H ∞ necessarily satisfy the same condition.

Currently displaying 741 – 760 of 914