Absorbent Sets in Topological Algebras
Let A and B be unital, semisimple commutative Banach algebras with the maximal ideal spaces M A and M B, respectively, and let r(a) be the spectral radius of a. We show that if T: A → B is a surjective mapping, not assumed to be linear, satisfying r(T(a) + T(b)) = r(a + b) for all a; b ∈ A, then there exist a homeomorphism φ: M B → M A and a closed and open subset K of M B such that for all a ∈ A, where e is unit element of A. If, in addition, and on M B, then T is an algebra isomorphism.
Étant donnés un compact du plan complexe, et une mesure non nulle sur , on étudie , l’adhérence dans , pour la topologie , de l’algèbre des fractions rationnelles d’une variable complexe, à pôles hors de . Le résultat principal obtenu est qu’il existe un sous-ensemble de , éventuellement vide, mesurable pour la mesure de Lebesgue plane, et une mesure , éventuellement nulle, absolument continue par rapport à la mesure , tels que : soit isométriquement isomorphe à , où désigne la...
Let 𝒳 be a compact Hausdorff space which satisfies the first axiom of countability, I = [0,1] and 𝓒(𝒳,I) the set of all continuous functions from 𝒳 to I. If φ: 𝓒(𝒳,I) → 𝓒(𝒳,I) is a bijective affine map then there exists a homeomorphism μ: 𝒳 → 𝒳 such that for every component C in 𝒳 we have either φ(f)(x) = f(μ(x)), f ∈ 𝓒(𝒳,I), x ∈ C, or φ(f)(x) = 1-f(μ(x)), f ∈ 𝓒(𝒳,I), x ∈ C.
Nella prima parte della nota sono studiate le proprietà di connessione dei sottospazi dello spettro di un anello. Con l’ausilio dei risultati ottenuti, si stabiliscono le condizioni necessarie e sufficienti affinchè un’algebra reale assolutamente piatta sia isomorfa ad un’algebra di funzioni continue a valori reali su un -spazio, del quale determini la topologia. Ulteriori condizioni sono necessarie e sufficienti affinché un’algebra reale assolutamente piatta sia isomorfa all’algebra di tutte le...
A systematic investigation of algebras of holomorphic functions endowed with the Hadamard product is given. For example we show that the set of all non-invertible elements is dense and that each multiplicative functional is continuous, answering some questions in the literature.
This article deals with bounding sets in real Banach spaces E with respect to the functions in A(E), the algebra of real analytic functions on E, as well as to various subalgebras of A(E). These bounding sets are shown to be relatively weakly compact and the question whether they are always relatively compact in the norm topology is reduced to the study of the action on the set of unit vectors in of the corresponding functions in . These results are achieved by studying the homomorphisms on the...
On étudie certaines algèbres de fonctions analytiques réelles définies sur un ouvert de . La propriété principale de ces algèbres est que tout semi-analytique de défini globalement à l’aide d’un nombre fini de fonctions de , admet un nombre fini de composantes connexes. En reprenant les idées de Khovanskii (lemme de Rolle généralisé), on démontre que ces algèbres restent topologiquement noethériennes quand on leur adjoint les solutions de certaines équations différentielles du ler ordre. Par...
A linear functional F on a Banach algebra A is almost multiplicative if |F(ab) - F(a)F(b)| ≤ δ∥a∥ · ∥b∥ for a,b ∈ A, for a small constant δ. An algebra is called functionally stable or f-stable if any almost multiplicative functional is close to a multiplicative one. The question whether an algebra is f-stable can be interpreted as a question whether A lacks an almost corona, that is, a set of almost multiplicative functionals far from the set of multiplicative functionals. In this paper we discuss...
Let A be a complex commutative Banach algebra with unit 1 and δ > 0. A linear map ϕ: A → ℂ is said to be δ-almost multiplicative if |ϕ(ab) - ϕ(a)ϕ(b)| ≤ δ||a|| ||b|| for all a,b ∈ A. Let 0 < ϵ < 1. The ϵ-condition spectrum of an element a in A is defined by with the convention that when λ - a is not invertible. We prove the following results connecting these two notions: (1) If ϕ(1) = 1 and ϕ is δ-almost multiplicative, then for all a in A. (2) If ϕ is linear and for all a in A,...