Toeplitz algebras and infinite simple C*-algebras associated with reduced group C*-algebras.
We give here a survey of some recent results on applications of topological quasi *-algebras to the analysis of the time evolution of quantum systems with infinitely many degrees of freedom.
Suppose is a separable unital -algebra each fibre of which is isomorphic to the same strongly self-absorbing and -injective -algebra . We show that and are isomorphic as -algebras provided the compact Hausdorff space is finite-dimensional. This statement is known not to extend to the infinite-dimensional case.
Given an ultragraph in the sense of Tomforde, we construct a topological quiver in the sense of Muhly and Tomforde in such a way that the universal C*-algebras associated to the two objects coincide. We apply results of Muhly and Tomforde for topological quiver algebras and of Katsura for topological graph C*-algebras to study the K-theory and gauge-invariant ideal structure of ultragraph C*-algebras.
L’espace des -pseudofonctions sur un groupe localement compact est le complété de pour la norme de convoluteur de . Dans le cas où le groupe est moyennable alors le banach dual à s’identifie avec une certaine algèbre de fonctions continues sur . L’algèbre est déjà connue mais ici on montre que est un foncteur de groupes localement compacts. Pour alors est l’algèbre de dont le dual est , l’algèbre de transformées de Fourier-Stieltjes. Donc, pour un groupe moyennable, élément...
On appelle pré-sous-groupe d’un unitaire multiplicatif agissant sur un espace hilbertien de dimension finie une droite vectorielle de telle que . Nous montrons que les pré-sous-groupes sont en nombre fini, donnons un équivalent du théorème de Lagrange et généralisons à ce cadre la construction du “bi-produit croisé”. De plus, nous établissons des bijections entre pré-sous-groupes et sous-algèbres coïdéales de l’algèbre de Hopf associée à , et donc, d’après Izumi, Longo, Popa, avec les...
In this paper, we consider the classification of unital extensions of -algebras by their six-term exact sequences in -theory. Using the classification theory of -algebras and the universal coefficient theorem for unital extensions, we give a complete characterization of isomorphisms between unital extensions of -algebras by stable Cuntz algebras. Moreover, we also prove a classification theorem for certain unital extensions of -algebras by stable purely infinite simple -algebras with nontrivial...