Previous Page 2

Displaying 21 – 37 of 37

Showing per page

Problems in the theory of quantum groups

Shuzhou Wang (1997)

Banach Center Publications

This is a collection of open problems in the theory of quantum groups. Emphasis is given to problems in the analytic aspects of the subject.

Quantum SU(2) and the Baum-Connes conjecture

Christian Voigt (2012)

Banach Center Publications

We review the formulation and proof of the Baum-Connes conjecture for the dual of the quantum group S U q ( 2 ) of Woronowicz. As an illustration of this result we determine the K-groups of quantum automorphism groups of simple matrix algebras.

Quantum symmetries in noncommutative C*-systems

Marcin Marciniak (1998)

Banach Center Publications

We introduce the notion of a completely quantum C*-system (A,G,α), i.e. a C*-algebra A with an action α of a compact quantum group G. Spectral properties of completely quantum systems are investigated. In particular, it is shown that G-finite elements form the dense *-subalgebra of A. Furthermore, properties of ergodic systems are studied. We prove that there exists a unique α-invariant state ω on A. Its properties are described by a family of modular operators σ z z acting on . It turns out that ω...

Quantum ultrametrics on AF algebras and the Gromov-Hausdorff propinquity

Konrad Aguilar, Frédéric Latrémolière (2015)

Studia Mathematica

We construct quantum metric structures on unital AF algebras with a faithful tracial state, and prove that for such metrics, AF algebras are limits of their defining inductive sequences of finite-dimensional C*-algebras for the quantum propinquity. We then study the geometry, for the quantum propinquity, of three natural classes of AF algebras equipped with our quantum metrics: the UHF algebras, the Effrös-Shen AF algebras associated with continued fraction expansions of irrationals, and the Cantor...

The C * -algebra of a Hilbert bimodule

Sergio Doplicher, Claudia Pinzari, Rita Zuccante (1998)

Bollettino dell'Unione Matematica Italiana

Un C * -modulo hilbertiano destro X su una C * -algebra A dotato di uno * -omomorfismo isometrico ϕ : A L A X viene qui considerato come un oggetto X A della C * -categoria degli A -moduli Hilbertiani destri. Come in [11], associamo ad esso una C * -algebra O X A contenente X come un « A -bimodulo hilbertiano in O X A ». Se X è pieno e proiettivo finito O X A è la C * -algebra C * X , la generalizzazione delle algebre di Cuntz-Krieger introdotta da Pimsner [27] (e in un caso particolare da Katayama [31]). Più in generale, C * X è canonicamente immersa...

The unitary implementation of a measured quantum groupoid action

Michel Enock (2010)

Annales mathématiques Blaise Pascal

Mimicking the von Neumann version of Kustermans and Vaes’ locally compact quantum groups, Franck Lesieur had introduced a notion of measured quantum groupoid, in the setting of von Neumann algebras. In a former article, the author had introduced the notions of actions, crossed-product, dual actions of a measured quantum groupoid; a biduality theorem for actions has been proved. This article continues that program: we prove the existence of a standard implementation for an action, and a biduality...

Weak c*-Hopf algebras: the coassociative symmetry of non-integral dimensions

Gabriella Böhm, Kornél Szlachányi (1997)

Banach Center Publications

By allowing the coproduct to be non-unital and weakening the counit and antipode axioms of a C*-Hopf algebra too, we obtain a selfdual set of axioms describing a coassociative quantum group, that we call a weak C*-Hopf algebra, which is sufficiently general to describe the symmetries of essentially arbitrary fusion rules. It is the same structure that can be obtained by replacing the multiplicative unitary of Baaj and Skandalis with a partial isometry. The algebraic properties, the existence of...

Weak multiplier Hopf algebras. Preliminaries, motivation and basic examples

Alfons Van Daele, Shuanhong Wang (2012)

Banach Center Publications

Let G be a finite group. Consider the algebra A of all complex functions on G (with pointwise product). Define a coproduct Δ on A by Δ(f)(p,q) = f(pq) where f ∈ A and p,q ∈ G. Then (A,Δ) is a Hopf algebra. If G is only a groupoid, so that the product of two elements is not always defined, one still can consider A and define Δ(f)(p,q) as above when pq is defined. If we let Δ(f)(p,q) = 0 otherwise, we still get a coproduct on A, but Δ(1) will no longer be the identity in A ⊗ A. The pair (A,Δ)...

When is a quantum space not a group?

Piotr Mikołaj Sołtan (2010)

Banach Center Publications

We give a survey of techniques from quantum group theory which can be used to show that some quantum spaces (objects of the category dual to the category of C*-algebras) do not admit any quantum group structure. We also provide a number of examples which include some very well known quantum spaces. Our tools include several purely quantum group theoretical results as well as study of existence of characters and traces on C*-algebras describing the considered quantum spaces as well as properties...

Currently displaying 21 – 37 of 37

Previous Page 2