Limit laws for Random matrices and free products.
We describe the limit measures for some class of deformations of the free convolution, introduced by A. D. Krystek and Ł. J. Wojakowski. In particular, we provide a counterexample to a conjecture from their paper.
Based on an analytical approach to the definition of multiplicative free convolution on probability measures on the nonnegative line ℝ+ and on the unit circle we prove analogs of limit theorems for nonidentically distributed random variables in classical Probability Theory.
We continue the analysis undertaken in a series of previous papers on structures arising as completions of C*-algebras under topologies coarser that their norm topology and we focus our attention on the so-called locally convex quasi C*-algebras. We show, in particular, that any strongly *-semisimple locally convex quasi C*-algebra (𝔛,𝔄₀) can be represented in a class of noncommutative local L²-spaces.
It is proved that every locally inner derivation on a symmetric norm ideal of operators is an inner derivation.