On graph -algebras with a linear ideal lattice.
Let be a continuous unitary representation of the locally compact group on the Hilbert space . Let be the algebra generated byThe main result obtained in this paper is Theorem 1:If is -compact and then supp is discrete and each in supp in CCR.We apply this theorem to the quasiregular representation and obtain among other results that implies in many cases that is a compact coset space.
It is shown that every almost linear Pexider mappings , , from a unital -algebra into a unital -algebra are homomorphisms when , and hold for all unitaries , all , and all , and that every almost linear continuous Pexider mappings , , from a unital -algebra of real rank zero into a unital -algebra are homomorphisms when , and hold for all , all and all . Furthermore, we prove the Cauchy-Rassias stability of -homomorphisms between unital -algebras, and -linear...
We use a non-commutative generalization of the Banach Principle to show that the classical individual ergodic theorem for subsequences generated by means of uniform sequences can be extended to the von Neumann algebra setting.
Let B(H) be the algebra of all bounded linear operators on a Hilbert space H. Automorphisms and antiautomorphisms are the only bijective linear mappings θ of B(H) with the property that θ(P) is an idempotent whenever P ∈ B(H) is. In case H is separable and infinite-dimensional, every local automorphism of B(H) is an automorphism.
Let k be a field. We prove that any polynomial ring over k is a Kadison algebra if and only if k is infinite. Moreover, we present some new examples of Kadison algebras and examples of algebras which are not Kadison algebras.