Displaying 821 – 840 of 1491

Showing per page

On completely bounded bimodule maps over W*-algebras

Bojan Magajna (2003)

Studia Mathematica

It is proved that for a von Neumann algebra A ⊆ B(ℋ ) the subspace of normal maps is dense in the space of all completely bounded A-bimodule homomorphisms of B(ℋ ) in the point norm topology if and only if the same holds for the corresponding unit balls, which is the case if and only if A is atomic with no central summands of type I , . Then a duality result for normal operator modules is presented and applied to the following problem. Given an operator space X and a von Neumann algebra A, is the map...

On derivations and crossed homomorphisms

Viktor Losert (2010)

Banach Center Publications

We discuss some results about derivations and crossed homomorphisms arising in the context of locally compact groups and their group algebras, in particular, L¹(G), the von Neumann algebra VN(G) and actions of G on related algebras. We answer a question of Dales, Ghahramani, Grønbæk, showing that L¹(G) is always permanently weakly amenable. Then we show that for some classes of groups (e.g. IN-groups) the homology of L¹(G) with coefficients in VN(G) is trivial. But this is no longer true, in general,...

On extremal positive maps acting between type I factors

Marcin Marciniak (2010)

Banach Center Publications

The paper is devoted to the problem of classification of extremal positive linear maps acting between 𝔅(𝒦) and 𝔅(ℋ) where 𝒦 and ℋ are Hilbert spaces. It is shown that every positive map with the property that rank ϕ(P) ≤ 1 for any one-dimensional projection P is a rank 1 preserver. This allows us to characterize all decomposable extremal maps as those which satisfy the above condition. Further, we prove that every extremal positive map which is 2-positive turns out to be automatically completely...

On generalized inverses in C*-algebras

Robin Harte, Mostafa Mbekhta (1992)

Studia Mathematica

We investigate when a C*-algebra element generates a closed ideal, and discuss Moore-Penrose and commuting generalized inverses.

On group representations whose C * algebra is an ideal in its von Neumann algebra

Edmond E. Granirer (1979)

Annales de l'institut Fourier

Let τ be a continuous unitary representation of the locally compact group G on the Hilbert space H τ . Let C τ * [ V N τ ] be the C * [ W * ] algebra generated by ( L 1 ( G ) ) and M τ ( C τ * ) = φ V N τ ; φ C τ * + C τ * φ C τ * . The main result obtained in this paper is Theorem 1:If G is σ -compact and M τ ( C τ * ) = V N τ then supp τ is discrete and each π in supp τ in CCR.We apply this theorem to the quasiregular representation τ = π H and obtain among other results that M π H ( C π H * ) = V N π H implies in many cases that G / H is a compact coset space.

On homomorphisms between C * -algebras and linear derivations on C * -algebras

Chun-Gil Park, Hahng-Yun Chu, Won-Gil Park, Hee-Jeong Wee (2005)

Czechoslovak Mathematical Journal

It is shown that every almost linear Pexider mappings f , g , h from a unital C * -algebra 𝒜 into a unital C * -algebra are homomorphisms when f ( 2 n u y ) = f ( 2 n u ) f ( y ) , g ( 2 n u y ) = g ( 2 n u ) g ( y ) and h ( 2 n u y ) = h ( 2 n u ) h ( y ) hold for all unitaries u 𝒜 , all y 𝒜 , and all n , and that every almost linear continuous Pexider mappings f , g , h from a unital C * -algebra 𝒜 of real rank zero into a unital C * -algebra are homomorphisms when f ( 2 n u y ) = f ( 2 n u ) f ( y ) , g ( 2 n u y ) = g ( 2 n u ) g ( y ) and h ( 2 n u y ) = h ( 2 n u ) h ( y ) hold for all u { v 𝒜 v = v * and v is invertible } , all y 𝒜 and all n . Furthermore, we prove the Cauchy-Rassias stability of * -homomorphisms between unital C * -algebras, and -linear...

Currently displaying 821 – 840 of 1491