Displaying 981 – 1000 of 1491

Showing per page

Orthogonally additive mappings on Hilbert modules

Dijana Ilišević, Aleksej Turnšek, Dilian Yang (2014)

Studia Mathematica

We study the representation of orthogonally additive mappings acting on Hilbert C*-modules and Hilbert H*-modules. One of our main results shows that every continuous orthogonally additive mapping f from a Hilbert module W over 𝓚(𝓗) or 𝓗𝓢(𝓗) to a complex normed space is of the form f(x) = T(x) + Φ(⟨x,x⟩) for all x ∈ W, where T is a continuous additive mapping, and Φ is a continuous linear mapping.

Outers for noncommutative H p revisited

David P. Blecher, Louis E. Labuschagne (2013)

Studia Mathematica

We continue our study of outer elements of the noncommutative H p spaces associated with Arveson’s subdiagonal algebras. We extend our generalized inner-outer factorization theorem, and our characterization of outer elements, to include the case of elements with zero determinant. In addition, we make several further contributions to the theory of outers. For example, we generalize the classical fact that outers in H p actually satisfy the stronger condition that there exist aₙ ∈ A with haₙ ∈ Ball(A)...

Parabolic variational inequalities with generalized reflecting directions

Eduard Rotenstein (2015)

Open Mathematics

We study, in a Hilbert framework, some abstract parabolic variational inequalities, governed by reflecting subgradients with multiplicative perturbation, of the following type: y´(t)+ Ay(t)+0.t Θ(t,y(t)) ∂φ(y(t))∋f(t,y(t)),y(0) = y0,t ∈[0,T] where A is a linear self-adjoint operator, ∂φ is the subdifferential operator of a proper lower semicontinuous convex function φ defined on a suitable Hilbert space, and Θ is the perturbing term which acts on the set of reflecting directions, destroying the...

Perturbations compactes des représentations d'un groupe dans un espace de Hilbert. II

Pierre de La Harpe, Max Karoubi (1978)

Annales de l'institut Fourier

Soit T une application d’un groupe G dans le groupe U ( H ) des opérateurs unitaires sur un espace de Hilbert. Si T ( g h ) - T ( g ) T ( h ) est un opérateur compact pour tous g , h G , quelles sont les obstructions à l’existence d’un homomorphisme S : G U ( H ) avec S ( g ) T ( g ) compact pour tout g G  ? Nous étudions ici les cas où G est une somme amalgamée de groupes finis et où G est un produit semi-direct d’un groupe fini par Z .

Currently displaying 981 – 1000 of 1491