Displaying 101 – 120 of 164

Showing per page

The strong Morita equivalence for coactions of a finite-dimensional C*-Hopf algebra on unital C*-algebras

Kazunori Kodaka, Tamotsu Teruya (2015)

Studia Mathematica

Following Jansen and Waldmann, and Kajiwara and Watatani, we introduce notions of coactions of a finite-dimensional C*-Hopf algebra on a Hilbert C*-bimodule of finite type in the sense of Kajiwara and Watatani and define their crossed product. We investigate their basic properties and show that the strong Morita equivalence for coactions preserves the Rokhlin property for coactions of a finite-dimensional C*-Hopf algebra on unital C*-algebras.

The unitary implementation of a measured quantum groupoid action

Michel Enock (2010)

Annales mathématiques Blaise Pascal

Mimicking the von Neumann version of Kustermans and Vaes’ locally compact quantum groups, Franck Lesieur had introduced a notion of measured quantum groupoid, in the setting of von Neumann algebras. In a former article, the author had introduced the notions of actions, crossed-product, dual actions of a measured quantum groupoid; a biduality theorem for actions has been proved. This article continues that program: we prove the existence of a standard implementation for an action, and a biduality...

Currently displaying 101 – 120 of 164