Displaying 101 – 120 of 184

Showing per page

On the ultrametric Stone-Weierstrass theorem and Mahler's expansion

Paul-Jean Cahen, Jean-Luc Chabert (2002)

Journal de théorie des nombres de Bordeaux

We describe an ultrametric version of the Stone-Weierstrass theorem, without any assumption on the residue field. If E is a subset of a rank-one valuation domain V , we show that the ring of polynomial functions is dense in the ring of continuous functions from E to V if and only if the topological closure E ^ of E in the completion V ^ of V is compact. We then show how to expand continuous functions in sums of polynomials.

On topological classification of non-archimedean Fréchet spaces

Wiesƚaw Śliwa (2004)

Czechoslovak Mathematical Journal

We prove that any infinite-dimensional non-archimedean Fréchet space E is homeomorphic to D where D is a discrete space with c a r d ( D ) = d e n s ( E ) . It follows that infinite-dimensional non-archimedean Fréchet spaces E and F are homeomorphic if and only if d e n s ( E ) = d e n s ( F ) . In particular, any infinite-dimensional non-archimedean Fréchet space of countable type over a field 𝕂 is homeomorphic to the non-archimedean Fréchet space 𝕂 .

On weighted inductive limits of non-Archimedean spaces of continuous functions

A. K. Katsaras, V. Benekas (2000)

Bollettino dell'Unione Matematica Italiana

Si studiano alcune proprietà di un certo limite induttivo di spazi non-archimedei di funzioni continue. In particolare, si esamina la completezza di questo limite induttivo e si indaga il problema di quando lo spazio coincide con il proprio inviluppo proiettivo.

Orthonormal bases for spaces of continuous and continuously differentiable functions defined on a subset of Zp.

Ann Verdoodt (1996)

Revista Matemática de la Universidad Complutense de Madrid

Let K be a non-Archimedean valued field which contains Qp, and suppose that K is complete for the valuation |·|, which extends the p-adic valuation. Vq is the closure of the set {aqn | n = 0,1,2,...} where a and q are two units of Zp, q not a root of unity. C(Vq --> K) (resp. C1(Vq --> K)) is the Banach space of continuous functions (resp. continuously differentiable functions) from Vq to K. Our aim is to find orthonormal bases for C(Vq --> K) and C1(Vq --> K).

p-adic Ascoli theorems.

Javier Martínez-Maurica, S. Navarro (1990)

Revista Matemática de la Universidad Complutense de Madrid

The aim of this paper is the study of a certain class of compact-like sets within some spaces of continuous functions over non-Archimedean ground fields. As a result, some p-adic Ascoli theorems are obtained.

P-adic Spaces of Continuous Functions I

Athanasios Katsaras (2008)

Annales mathématiques Blaise Pascal

Properties of the so called θ o -complete topological spaces are investigated. Also, necessary and sufficient conditions are given so that the space C ( X , E ) of all continuous functions, from a zero-dimensional topological space X to a non-Archimedean locally convex space E , equipped with the topology of uniform convergence on the compact subsets of X to be polarly barrelled or polarly quasi-barrelled.

P-adic Spaces of Continuous Functions II

Athanasios Katsaras (2008)

Annales mathématiques Blaise Pascal

Necessary and sufficient conditions are given so that the space C ( X , E ) of all continuous functions from a zero-dimensional topological space X to a non-Archimedean locally convex space E , equipped with the topology of uniform convergence on the compact subsets of X , to be polarly absolutely quasi-barrelled, polarly o -barrelled, polarly -barrelled or polarly c o -barrelled. Also, tensor products of spaces of continuous functions as well as tensor products of certain E -valued measures are investigated.

Currently displaying 101 – 120 of 184