Loading [MathJax]/extensions/MathZoom.js
Let be the set of partial isometries with finite rank of an infinite dimensional Hilbert space . We show that is a smooth submanifold of the Hilbert space of Hilbert-Schmidt operators of and that each connected component is the set , which consists of all partial isometries of rank . Furthermore, is a homogeneous space of , where is the classical Banach-Lie group of unitary operators of , which are Hilbert-Schmidt perturbations of the identity. We introduce two Riemannian metrics...
We present new results related to various equivalents of the mixed-type reverse order law for the Moore-Penrose inverse for operators on Hilbert spaces. Recent finite-dimensional results of Tian are extended to Hilbert space operators.
Let t be a regular operator between Hilbert C*-modules and be its Moore-Penrose inverse. We investigate the Moore-Penrose invertibility of the Gram operator t*t. More precisely, we study some conditions ensuring that and . As an application, we get some results for densely defined closed operators on Hilbert C*-modules over C*-algebras of compact operators.
Currently displaying 1 –
5 of
5