Tauberian operators in -adic analysis.
A bounded linear operator T on a complex Banach space X is called an operator of Saphar type if its kernel is contained in its generalized range and T is relatively regular. For T of Saphar type we determine the supremum of all positive numbers δ such that T - λI is of Saphar type for |λ| < δ.
If ϕ is an analytic self-mapping of the unit disc D and if is the Hardy-Hilbert space on D, the composition operator on is defined by . In this article, we consider which Toeplitz operators satisfy
We are concerned with some unbounded linear operators on the so-called -adic Hilbert space . Both the Closedness and the self-adjointness of those unbounded linear operators are investigated. As applications, we shall consider the diagonal operator on , and the solvability of the equation where is a linear operator on .
Let G be the multiplicative group of invertible elements of E(X), the algebra of all bounded linear operators on a Banach space X. In 1945 Mackey showed that if and are any two sets of linearly independent elements of X with the same number of items, then there exists T ∈ G so that , . We prove that some proper multiplicative subgroups of G have this property.
The term "Algebraic Analysis" in the last two decades is used in two completely different senses. It seems that at least one is far away from its historical roots. Thus, in order to explain this misunderstanding, the history of this term from its origins is recalled.