Characterizations of seminorms given by continuous linear functionals on normed linear spaces and applications to Gel'fand measures.
Conditions involving closed range of multipliers on general Banach algebras are studied. Numerous conditions equivalent to a splitting A = TA ⊕ kerT are listed, for a multiplier T defined on the Banach algebra A. For instance, it is shown that TA ⊕ kerT = A if and only if there is a commuting operator S for which T = TST and S = STS, that this is the case if and only if such S may be taken to be a multiplier, and that these conditions are also equivalent to the existence of a factorization T = PB,...
The main topic of the paper is the continuity of several kinds of generalized inversion of elements in a Banach algebra with identity. We introduce the notion of asymptotic generalized invertibility and completely characterize sequences of elements with this property. Based on this result, we derive continuity criteria which generalize the well known criteria from operator theory.
We study the continuity of the generalized Drazin inverse for elements of Banach algebras and bounded linear operators on Banach spaces. This work extends the results obtained by the second author on the conventional Drazin inverse.
A class of convolution operators on spaces of holomorphic functions related to the Hadamard multiplication theorem for power series and generalizing infinite order Euler differential operators is introduced and investigated. Emphasis is placed on questions concerning injectivity, denseness of range and surjectivity of the operators.
Some statements of the paper [4] are corrected.