Partial isometries and EP elements in rings with involution.
Let 𝓔 be a Banach space contained in a Hilbert space 𝓛. Assume that the inclusion is continuous with dense range. Following the terminology of Gohberg and Zambickiĭ, we say that a bounded operator on 𝓔 is a proper operator if it admits an adjoint with respect to the inner product of 𝓛. A proper operator which is self-adjoint with respect to the inner product of 𝓛 is called symmetrizable. By a proper subspace 𝓢 we mean a closed subspace of 𝓔 which is the range of a proper projection. Furthermore,...
Tauberian operators, which appeared in response to a problem in summability [GaW, KW] have found application in several situations: factorization of operators [DFJP], preservation of isomorphic properties of Banach spaces [N, NR], equivalence between the Radon-Nikodym property and the Krein-Milman property [Sch], and generalized Fredholm operators [Ta, Y].This paper is a survey of the main properties and applications of Tauberian operators.
Rodrigues’ extension (1989) of the classical Pták’s homomorphism theorem to a non-necessarily locally convex setting stated that a nearly semi-open mapping between a semi-B-complete space and an arbitrary topological vector space is semi-open. In this paper we study this extension and, as a consequence of the results obtained, provide an improvement of Pták’s homomorphism theorem.