Displaying 101 – 120 of 142

Showing per page

Standard commuting dilations and liftings

Santanu Dey (2012)

Colloquium Mathematicae

We identify how the standard commuting dilation of the maximal commuting piece of any row contraction, especially on a finite-dimensional Hilbert space, is associated to the minimal isometric dilation of the row contraction. Using the concept of standard commuting dilation it is also shown that if liftings of row contractions are on finite-dimensional Hilbert spaces, then there are strong restrictions on properties of the liftings.

Standard dilations of q-commuting tuples

Santanu Dey (2007)

Colloquium Mathematicae

We study dilations of q-commuting tuples. Bhat, Bhattacharyya and Dey gave the correspondence between the two standard dilations of commuting tuples and here these results are extended to q-commuting tuples. We are able to do this when the q-coefficients q i j are of modulus one. We introduce a “maximal q-commuting subspace” of an n-tuple of operators and a “standard q-commuting dilation”. Our main result is that the maximal q-commuting subspace of the standard noncommuting dilation of a q-commuting...

The support of the associated measure to the Cowen's tridiagonal matrix.

Dolores Barrios, Venancio Tomeo, Emilio Torrano (1994)

Extracta Mathematicae

In this paper we consider a class of three-term recurrence relations, whose associated tridiagonal matrices are subnormal operators. In this cases, there are measures associated to the polynomials given by such relations. We study the support of these measures.

Unitary asymptotes of Hilbert space operators

László Kérchy (1994)

Banach Center Publications

In this survey article we are going to present the effectiveness of the use of unitary asymptotes in the study of Hilbert space operators.

Unitary equivalence of operators and dilations

Chafiq Benhida (2004)

Studia Mathematica

Given two contractions T and T' such that T'-T is an operator of finite rank, we prove, under some conditions, the unitary equivalence of the unitary parts of the minimal isometric dilations (respectively minimal co-isometric extensions) of T and T'.

Wavelet compression of anisotropic integrodifferential operators on sparse tensor product spaces

Nils Reich (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

For a class of anisotropic integrodifferential operators arising as semigroup generators of Markov processes, we present a sparse tensor product wavelet compression scheme for the Galerkin finite element discretization of the corresponding integrodifferential equations u = f on [0,1]n with possibly large n. Under certain conditions on , the scheme is of essentially optimal and dimension independent complexity 𝒪 (h-1| log h |2(n-1)) without corrupting the convergence or smoothness requirements...

Wold-type extension for N-tuples of commuting contractions

Marek Kosiek, Alfredo Octavio (1999)

Studia Mathematica

Let (T1,…,TN) be an N-tuple of commuting contractions on a separable, complex, infinite-dimensional Hilbert space ℋ. We obtain the existence of a commuting N-tuple (V1,…,VN) of contractions on a superspace K of ℋ such that each V j extends T j , j=1,…,N, and the N-tuple (V1,…,VN) has a decomposition similar to the Wold-von Neumann decomposition for coisometries (although the V j need not be coisometries). As an application, we obtain a new proof of a result of Słociński (see [9])

Currently displaying 101 – 120 of 142