Page 1

Displaying 1 – 9 of 9

Showing per page

Dilatations des commutants d'opérateurs pour des espaces de Krein de fonctions analytiques

Daniel Alpay (1989)

Annales de l'institut Fourier

Soient 𝒦 1 et 𝒦 2 deux espaces de Krein de fonctions analytiques dans le disque unité invariants pour l’opérateur de déplacement à gauche R 0 ( R 0 f ( z ) = ( f ( z ) - f ( 0 ) ) / z ) et soit A un opérateur linéaire continu de 𝒦 1 dans 𝒦 2 dont l’adjoint commute avec R 0 . Nous étudions les dilatations B de A qui conservent cette propriété de commutation et pour lesquelles les formes hermitiennes définies par I - A A * et I - B B * ont le même nombre de carrés négatifs. Nous obtenons ainsi une version du théorème de dilatation des commutants d’opérateurs dans le cadre...

Currently displaying 1 – 9 of 9

Page 1