A characterisation of dilation-analytic operators
Given a domain of class , , we construct a chart that maps normals to the boundary of the half space to normals to the boundary of in the sense that and that still is of class . As an application we prove the existence of a continuous extension operator for all normal derivatives of order 0 to on domains of class . The construction of this operator is performed in weighted function spaces where the weight function is taken from the class of Muckenhoupt weights.
In this note a commutant lifting theorem for vector-valued functional Hilbert spaces over generalized analytic polyhedra in ℂⁿ is proved. Let T be the compression of the multiplication tuple to a *-invariant closed subspace of the underlying functional Hilbert space. Our main result characterizes those operators in the commutant of T which possess a lifting to a multiplier with Schur class symbol. As an application we obtain interpolation results of Nevanlinna-Pick and Carathéodory-Fejér type...
We survey recent developments in operator theory and moment problems, beginning with the study of quadratic hyponormality for unilateral weighted shifts, its connections with truncated Hamburger, Stieltjes, Hausdorff and Toeplitz moment problems, and the subsequent proof that polynomially hyponormal operators need not be subnormal. We present a general elementary approach to truncated moment problems in one or several real or complex variables, based on matrix positivity and extension. Together...
In this paper we give some analytic formulas for the hyperbolic (Harnack) distance between two contractions which permit concrete computations in several situations, including the finite-dimensional case. The main consequence of these formulas is the proof of the Schwarz-Pick Lemma. It modifies those given in [13] by the avoidance of a general Schur type formula for contractive analytic functions, more exactly by reducing the case to the more manageable situation when the function takes as values...