On a Hilbert-type operator with a symmetric homogeneous kernel of -order and applications.
A recurrence relation for the computation of the -norms of an Hermitian Fredholm integral operator is derived and an expression giving approximately the number of eigenvalues which in absolute value are equal to the spectral radius is determined. Using the -norms for the approximation of the spectral radius of this operator an a priori and an a posteriori bound for the error are obtained. Some properties of the a posteriori bound are discussed.
In this paper, we minimize the map Fp (X)= ||S−(AX−XB)||Pp , where the pair (A, B) has the property (F P )Cp , S ∈ Cp , X varies such that AX − XB ∈ Cp and Cp denotes the von Neumann-Schatten class.
2000 Mathematics Subject Classification: 47B47, 47B10, 47A30.In this note, we characterize quasi-normality of two-sided multiplication, restricted to a norm ideal and we extend this result, to an important class which contains all quasi-normal operators. Also we give some applications of this result.