Exponential decay law and irreversibility of decay and collision processes
A space of boundary values is constructed for the minimal symmetric operator generated by an infinite Jacobi matrix in the limit-circle case. A description of all maximal dissipative, accretive and selfadjoint extensions of such a symmetric operator is given in terms of boundary conditions at infinity. We construct a selfadjoint dilation of maximal dissipative operator and its incoming and outgoing spectral representations, which makes it possible to determine the scattering matrix of dilation....
We show that the poles of a resolvent coincide with the poles of its weak resolvent up to their orders, for operators on Hilbert space which have some cyclic properties. Using this, we show that a theorem similar to the Mlak theorem holds under milder conditions, if a given operator and its adjoint have cyclic vectors.