Perturbations of Fredholm operators
Let T and V be two Hilbert space contractions and let X be a linear bounded operator. It was proved by C. Foiaş and J. P. Williams that in certain cases the operator block matrix R(X;T,V) (equation (1.1) below) is similar to a contraction if and only if the commutator equation X = TZ-ZV has a bounded solution Z. We characterize here the similarity to contractions of some operator matrices R(X;T,V) in terms of growth conditions or of perturbations of R(0;T,V) = T ⊕ V.
Let be a bounded linear operator in a complex separable Hilbert space , and be a selfadjoint operator in . Assuming that belongs to the Schatten-von Neumann ideal
Suppose A is a sectorial operator on a Banach space X, which admits an H∞-calculus. We study conditions on a multiplicative perturbation B of A which ensure that B also has an H∞-calculus. We identify a class of bounded operators T : X→X, which we call strongly triangular, such that if B = (1 + T) A is sectorial then it also has an H∞-calculus. In the case X is a Hilbert space an operator is strongly triangular if and only if ∑ Sn(T)/n <∞ where (Sn(T))n=1∞ are the singular values of T.
A bounded linear operator T acting on a Hilbert space is said to be polaroid if each isolated point in the spectrum is a pole of the resolvent of T. There are several generalizations of the polaroid property. We investigate compact perturbations of polaroid type operators. We prove that, given an operator T and ε > 0, there exists a compact operator K with ||K|| < ε such that T + K is polaroid. Moreover, we characterize those operators for which a certain polaroid type property is stable under...
We obtain a new sufficient condition (which may be useful elsewhere) that a compact perturbation of a normal operator be the quasiaffine transform of some normal operator. We also give some applications of this result.
Soit C(X,Y) l’ensemble des opérateurs fermés à domaines denses dans l’espace de Banach X à valeurs dans l’espace de Banach Y, muni de la métrique du gap. Soit et , où α (T) est la dimension du noyau de T. Nous montrons que est un ouvert de (et donc ouvert dans C(X,Y)) et que est dense dans . Nous déduisons quelques résultats de densités. A la fin de se travail nous donnons un exemple d’espace de Banach X tel que, d’une part, n’est pas connexe dans B(X) et d’autre part, l’ensemble des...