On a theorem of Lebow and Mlak for several commuting operators
Let 𝒜 be a Banach algebra over ℂ with unit 1 and 𝑓: ℂ → ℂ an entire function. Let 𝐟: 𝒜 → 𝒜 be defined by 𝐟(a) = 𝑓(a) (a ∈ 𝒜), where 𝑓(a) is given by the usual analytic calculus. The connections between the periods of 𝑓 and the periods of 𝐟 are settled by a theorem of E. Vesentini. We give a new proof of this theorem and investigate further properties of periods of 𝐟, for example in C*-algebras.
Let A be a closed linear operator acting in a separable Hilbert space. Denote by co(A) the closed convex hull of the spectrum of A. An estimate for the norm of f(A) is obtained under the following conditions: f is a holomorphic function in a neighbourhood of co(A), and for some integer p the operator is Hilbert-Schmidt. The estimate improves one by I. Gelfand and G. Shilov.
For a bounded and sectorial linear operator V in a Banach space, with spectrum in the open unit disc, we study the operator . We show, for example, that Ṽ is sectorial, and asymptotically of type 0. If V has single-point spectrum 0, then Ṽ is of type 0 with a single-point spectrum, and the operator I-Ṽ satisfies the Ritt resolvent condition. These results generalize an example of Lyubich, who studied the case where V is a classical Volterra operator.
A two-sided sequence with values in a complex unital Banach algebra is a cosine sequence if it satisfies for any n,m ∈ ℤ with c₀ equal to the unity of the algebra. A cosine sequence is bounded if . A (bounded) group decomposition for a cosine sequence is a representation of c as for every n ∈ ℤ, where b is an invertible element of the algebra (satisfying , respectively). It is known that every bounded cosine sequence possesses a universally defined group decomposition, the so-called...
We give new results on square functionsassociated to a sectorial operator on for . Under the assumption that is actually -sectorial, we prove equivalences of the form for suitable functions . We also show that has a bounded functional calculus with respect to . Then we apply our results to the study of conditions under which we have an estimate , when generates a bounded semigroup on and is a linear mapping.
We describe the geometric structure of the -characteristic of fractional powers of bounded or compact linear operators over domains with arbitrary measure. The description builds essentially on the Riesz-Thorin and Marcinkiewicz-Stein-Weiss- Ovchinnikov interpolation theorems, as well as on the Krasnosel’skij-Krejn factorization theorem.