Extensions of Heinz-Kato-Furuta inequality. II.
The optimal hypercontractivity constant for a natural operator semigroup acting on a discrete finite probability space is established up to a universal factor. The two-point spaces are proved to be the extremal case. The constants obtained are also optimal in the related moment inequalities for sums of independent random variables.
By virtue of convexity of Heinz means, in this paper we derive several refinements of Heinz norm inequalities with the help of the Jensen functional and its properties. In addition, we discuss another approach to Heinz operator means which is more convenient for obtaining the corresponding operator inequalities for positive invertible operators.
We say that the function is under the chord if for any . In this paper we proved amongst other that provided that is monotonic nondecreasing and is continuous and under the chord. Some particular cases for the weighted integrals in connection with the Fejér inequalities are provided. Applications for continuous functions of selfadjoint operators on Hilbert spaces are also given.
Concise but self-contained reviews are given on theories of majorization and symmetrically normed ideals, including the proofs of the Lidskii-Wielandt and the Gelfand-Naimark theorems. Based on these reviews, we discuss logarithmic majorizations and norm inequalities of Golden-Thompson type and its complementary type for exponential operators on a Hilbert space. Furthermore, we obtain norm convergences for the exponential product formula as well as for that involving operator means.
Let be a continuous function on and , , the convex set of selfadjoint operators with spectra in . If and , as an operator function, is Gateaux differentiable on while is Lebesgue integrable, then we have the inequalities where is the Gateaux derivative of .
We prove numerical radius inequalities for products, commutators, anticommutators, and sums of Hilbert space operators. A spectral radius inequality for sums of commuting operators is also given. Our results improve earlier well-known results.