On the Cosine-Sine Operator Functional Equations
For a given linear operator T in a complex Banach space X and α ∈ ℂ with ℜ (α) > 0, we define the nth Cesàro mean of order α of the powers of T by . For α = 1, we find , the usual Cesàro mean. We give necessary and sufficient conditions for a (C,α) bounded operator to be (C,α) strongly (weakly) ergodic.
We improve a recent result of T. Yoshimoto about the uniform ergodic theorem with Cesàro means of order α. We give a necessary and sufficient condition for the (C,α) uniform ergodicity with α > 0.
Let be an operator acting on a Banach space . We show that between extensions of to some Banach space which do not increase the defect spectrum (or the spectrum) it is possible to find an extension with the minimal possible defect spectrum.
We consider scalar products on a given Hilbert space parametrized by bounded positive and invertible operators defined on this space, and orthogonal projectors onto a fixed closed subspace of the initial Hilbert space corresponding to these scalar products. We show that the projector is an analytic function of the scalar product, we give the explicit formula for its Taylor expansion, and we prove some algebraic formulas for projectors.
Let A denote a complex unital Banach algebra. We characterize properties such as boundedness, relative compactness, and convergence of the sequence for an arbitrary x ∈ A, using σ(x) and resolvent conditions. Under these circumstances, we investigate elements in the peripheral spectrum, and give further conclusions, also involving the behaviour of and .
Let be a selfadjoint classical pseudo-differential operator of order with non-negative principal symbol on a compact manifold. We assume that is hypoelliptic with loss of one derivative and semibounded from below. Then exp, , is constructed as a non-classical Fourier integral operator and the main contribution to the asymptotic distribution of eigenvalues of is computed. This paper is a continuation of a series of joint works with A. Menikoff.