Displaying 241 – 260 of 502

Showing per page

On the axiomatic theory of spectrum

V. Kordula, V. Müller (1996)

Studia Mathematica

There are a number of spectra studied in the literature which do not fit into the axiomatic theory of Żelazko. This paper is an attempt to give an axiomatic theory for these spectra, which, apart from the usual types of spectra, like one-sided, approximate point or essential spectra, include also the local spectra, the Browder spectrum and various versions of the Apostol spectrum (studied under various names, e.g. regular, semiregular or essentially semiregular).

On the axiomatic theory of spectrum II

M. Mbekhta, V. Müller (1996)

Studia Mathematica

We give a survey of results concerning various classes of bounded linear operators in a Banach space defined by means of kernels and ranges. We show that many of these classes define a spectrum that satisfies the spectral mapping property.

On the canonical development of Parseval formulas for singular differential operators

Robert W. Carroll (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Per funzioni opportune f , g si ottiene una formula di Parseval 𝐑 Q , 𝒬 f 𝒬 g λ = Δ Q - 1 / 2 f , Δ Q - 1 / 2 g per operatori differenziali singolari di tipo dell'operatore radiale di Laplace-Beltrami. 𝐑 Q è una funzione spettrale generalizzata di tipo Marčenko e può essere rappresentata per mezzo di un certo nucleo della trasmutazione.

On the -characteristic of fractional powers of linear operators

Jürgen Appell, Marilda A. Simões, Petr P. Zabrejko (1994)

Commentationes Mathematicae Universitatis Carolinae

We describe the geometric structure of the -characteristic of fractional powers of bounded or compact linear operators over domains with arbitrary measure. The description builds essentially on the Riesz-Thorin and Marcinkiewicz-Stein-Weiss- Ovchinnikov interpolation theorems, as well as on the Krasnosel’skij-Krejn factorization theorem.

On the characterization of scalar type spectral operators

P. A. Cojuhari, A. M. Gomilko (2008)

Studia Mathematica

The paper is concerned with conditions guaranteeing that a bounded operator in a reflexive Banach space is a scalar type spectral operator. The cases where the spectrum of the operator lies on the real axis and on the unit circle are studied separately.

Currently displaying 241 – 260 of 502