On the approximation of some nonlinear equations.
There are a number of spectra studied in the literature which do not fit into the axiomatic theory of Żelazko. This paper is an attempt to give an axiomatic theory for these spectra, which, apart from the usual types of spectra, like one-sided, approximate point or essential spectra, include also the local spectra, the Browder spectrum and various versions of the Apostol spectrum (studied under various names, e.g. regular, semiregular or essentially semiregular).
We give a survey of results concerning various classes of bounded linear operators in a Banach space defined by means of kernels and ranges. We show that many of these classes define a spectrum that satisfies the spectral mapping property.
Per funzioni opportune si ottiene una formula di Parseval per operatori differenziali singolari di tipo dell'operatore radiale di Laplace-Beltrami. è una funzione spettrale generalizzata di tipo Marčenko e può essere rappresentata per mezzo di un certo nucleo della trasmutazione.
We describe the geometric structure of the -characteristic of fractional powers of bounded or compact linear operators over domains with arbitrary measure. The description builds essentially on the Riesz-Thorin and Marcinkiewicz-Stein-Weiss- Ovchinnikov interpolation theorems, as well as on the Krasnosel’skij-Krejn factorization theorem.
The paper is concerned with conditions guaranteeing that a bounded operator in a reflexive Banach space is a scalar type spectral operator. The cases where the spectrum of the operator lies on the real axis and on the unit circle are studied separately.
We study Kalton's theorem on the unconditional convergence of series of compact operators and we use some matrix techniques to obtain sufficient conditions, weaker than the previous one, on the convergence and unconditional convergence of series of compact operators.