Bounds for the singular values of smooth kernels
Let be a non-zero positive vector of a Banach lattice , and let be a positive linear operator on with the spectral radius . We find some groups of assumptions on , and under which the inequalities hold. An application of our results gives simple upper and lower bounds for the spectral radius of a product of positive operators in terms of positive eigenvectors corresponding to the spectral radii of given operators. We thus extend the matrix result obtained by Johnson and Bru which...
We describe the Browder Riesz-Schauder theory of compact operators in Banach spaces in the context of polynomially finite rank linear relations in Banach spaces.
A typical wavelet system constitutes an unconditional basis for various function spaces -Lebesgue, Besov, Triebel-Lizorkin, Hardy, BMO. One of the main reasons is the frequency localization of an element from such a basis. In this paper we study a wavelet-type system, called a brushlet system. In [3] it was noticed that brushlets constitute unconditional bases for classical function spaces such as the Triebel-Lizorkin and Besov spaces. In this paper we study brushlet expansions of functions in the...