Bilinear Mappings and Trace Class Ideals.
Passing from Cesàro means to Borel-type methods of summability we prove some ergodic theorem for operators (acting in a Banach space) with spectrum contained in ℂ∖(1,∞).
For a linear operator T in a Banach space let denote the point spectrum of T, let for finite n > 0 be the set of all such that dim ker(T - λ) = n and let be the set of all for which ker(T - λ) is infinite-dimensional. It is shown that is , is and for each finite n the set is the intersection of an set and a set provided T is closable and the domain of T is separable and weakly σ-compact. For closed densely defined operators in a separable Hilbert space a more detailed decomposition...
We consider a two-dimensional quantum waveguide composed of two semi-strips of width 1 and 1 − ε, where ε > 0 is a small real parameter, i.e. the waveguide is gently converging. The width of the junction zone for the semi-strips is 1 + O(√ε). We will present a sufficient condition for the existence of a weakly coupled bound state below π2, the lower bound of the continuous spectrum. This eigenvalue in the discrete spectrum is unique and its asymptotics is constructed and justified when ε → 0+....
We study boundary value problems of the type Ax = r, φ(x) = φ(b) (φ ∈ M ⊆ E*) in ordered Banach spaces.
Let T be a multicyclic operator defined on some Banach space. Bounded point evaluations and analytic bounded point evaluations for T are defined to generalize the cyclic case. We extend some known results on cyclic operators to the more general setting of multicyclic operators on Banach spaces. In particular we show that if T satisfies Bishop’s property (β), then . We introduce the concept of analytic structures and we link it to different spectral quantities. We apply this concept to retrieve...
We discuss implication relations for boundedness and growth orders of Cesàro means and Abel means of discrete semigroups and continuous semigroups of linear operators. Counterexamples are constructed to show that implication relations between two Cesàro means of different orders or between Cesàro means and Abel means are in general strict, except when the space has dimension one or two.
Some boundedness results are established for sublinear operators on the homogeneous Herz spaces. As applications, some new theorems about the boundedness on homogeneous Herz spaces for commutators of singular integral operators are obtained.
Let T: H → H be an operator in the complex Hilbert space H. Suppose that T is square bounded in average in the sense that there exists a constant M(T) with the property that, for all natural numbers n and for all x ∈ H, the inequality is satisfied. Also suppose that the adjoint T* of the operator T is square bounded in average with constant M(T*). Then the operator T is power bounded in the sense that is finite. In fact the following inequality is valid for all n ∈ ℕ: ∥Tn∥ ≤ e M(T)M(T*). Suppose...
Mathematics Subject Classification: 47A56, 47A57,47A63We derive bounds for the norms of the fractional powers of operators with compact Hermitian components, and operators having compact inverses in a separable Hilbert space. Moreover, for these operators, as well as for dissipative operators, the constants in the moment inequalities are established.* This research was supported by the Kamea Fund of Israel.