Displaying 41 – 60 of 69

Showing per page

Uniformly convex operators and martingale type.

Jörg Wenzel (2002)

Revista Matemática Iberoamericana

The concept of uniform convexity of a Banach space was gen- eralized to linear operators between Banach spaces and studied by Beauzamy [1]. Under this generalization, a Banach space X is uniformly convex if and only if its identity map Ix is. Pisier showe

Uniformly ergodic A-contractions on Hilbert spaces

Laurian Suciu (2009)

Studia Mathematica

We study the concept of uniform (quasi-) A-ergodicity for A-contractions on a Hilbert space, where A is a positive operator. More precisely, we investigate the role of closedness of certain ranges in the uniformly ergodic behavior of A-contractions. We use some known results of M. Lin, M. Mbekhta and J. Zemánek, and S. Grabiner and J. Zemánek, concerning the uniform convergence of the Cesàro means of an operator, to obtain similar versions for A-contractions. Thus, we continue the study of A-ergodic...

Unique prime factorization in a partial semigroup of matrix-polynomials

Michael Kaltenbäck, Harald Woracek (2006)

Discussiones Mathematicae - General Algebra and Applications

We establish a unique factorization result into irreducibel elements in the partial semigroup of 2 × 2-matrices with entries in K[x] whose determinant is equal to 1, where K is a field, and where multiplication is defined as the usual matrix-multiplication if the degrees of the factors add up. This investigation is motivated by a result on matrices of entire functions.

Unitary asymptotes of Hilbert space operators

László Kérchy (1994)

Banach Center Publications

In this survey article we are going to present the effectiveness of the use of unitary asymptotes in the study of Hilbert space operators.

Unitary dilation for polar decompositions of p-hyponormal operators

Muneo Chō, Tadasi Huruya, Kôtarô Tanahashi (2005)

Banach Center Publications

In this paper, we introduce the angular cutting and the generalized polar symbols of a p-hyponormal operator T in the case where U of the polar decomposition T = U|T| is not unitary and study spectral properties of it.

Unitary equivalence of operators and dilations

Chafiq Benhida (2004)

Studia Mathematica

Given two contractions T and T' such that T'-T is an operator of finite rank, we prove, under some conditions, the unitary equivalence of the unitary parts of the minimal isometric dilations (respectively minimal co-isometric extensions) of T and T'.

Universal images of universal elements

Luis Bernal-González (2000)

Studia Mathematica

We furnish several necessary and sufficient conditions for the following property: For a topological space X, a continuous selfmapping S of X and a family τ of continuous selfmappings of X, the image under S of every τ-universal element is also τ-universal. An application in operator theory, where we extend results of Bourdon, Herrero, Bes, Herzog and Lemmert, is given. In particular, it is proved that every hypercyclic operator on a real or complex Banach space has a dense invariant linear manifold...

Currently displaying 41 – 60 of 69