Displaying 21 – 40 of 69

Showing per page

Unbounded Jacobi Matrices with Empty Absolutely Continuous Spectrum

Petru Cojuhari, Jan Janas (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Sufficient conditions for the absence of absolutely continuous spectrum for unbounded Jacobi operators are given. A class of unbounded Jacobi operators with purely singular continuous spectrum is constructed as well.

Unbounded well-bounded operators, strongly continuous semigroups and the Laplace transform

Ralph deLaubenfels (1992)

Studia Mathematica

Suppose A is a (possibly unbounded) linear operator on a Banach space. We show that the following are equivalent. (1) A is well-bounded on [0,∞). (2) -A generates a strongly continuous semigroup e - s A s 0 such that ( 1 / s 2 ) e - s A s > 0 is the Laplace transform of a Lipschitz continuous family of operators that vanishes at 0. (3) -A generates a strongly continuous differentiable semigroup e - s A s 0 and ∃ M < ∞ such that H n ( s ) ( k = 0 n ( s k A k ) / k ! ) e - s A M , ∀s > 0, n ∈ ℕ ∪ 0. (4) -A generates a strongly continuous holomorphic semigroup e - z A R e ( z ) > 0 that is O(|z|) in all...

Unicellularity of the multiplication operator on Banach spaces of formal power series

B. Yousefi (2001)

Studia Mathematica

Let β ( n ) n = 0 be a sequence of positive numbers and 1 ≤ p < ∞. We consider the space p ( β ) of all power series f ( z ) = n = 0 f ̂ ( n ) z such that n = 0 | f ̂ ( n ) | p | β ( n ) | p < . We give some sufficient conditions for the multiplication operator, M z , to be unicellular on the Banach space p ( β ) . This generalizes the main results obtained by Lu Fang [1].

Uniform exponential ergodicity of stochastic dissipative systems

Beniamin Goldys, Bohdan Maslowski (2001)

Czechoslovak Mathematical Journal

We study ergodic properties of stochastic dissipative systems with additive noise. We show that the system is uniformly exponentially ergodic provided the growth of nonlinearity at infinity is faster than linear. The abstract result is applied to the stochastic reaction diffusion equation in d with d 3 .

Uniform factorization for compact sets of weakly compact operators

Kristel Mikkor, Eve Oja (2006)

Studia Mathematica

We prove uniform factorization results that describe the factorization of compact sets of compact and weakly compact operators via Hölder continuous homeomorphisms having Lipschitz continuous inverses. This yields, in particular, quantitative strengthenings of results of Graves and Ruess on the factorization through p -spaces and of Aron, Lindström, Ruess, and Ryan on the factorization through universal spaces of Figiel and Johnson. Our method is based on the isometric version of the Davis-Figiel-Johnson-Pełczyński...

Currently displaying 21 – 40 of 69