Un problema ai limiti per un'equazione astratta del secondo ordine
Sufficient conditions for the absence of absolutely continuous spectrum for unbounded Jacobi operators are given. A class of unbounded Jacobi operators with purely singular continuous spectrum is constructed as well.
Suppose A is a (possibly unbounded) linear operator on a Banach space. We show that the following are equivalent. (1) A is well-bounded on [0,∞). (2) -A generates a strongly continuous semigroup such that is the Laplace transform of a Lipschitz continuous family of operators that vanishes at 0. (3) -A generates a strongly continuous differentiable semigroup and ∃ M < ∞ such that , ∀s > 0, n ∈ ℕ ∪ 0. (4) -A generates a strongly continuous holomorphic semigroup that is O(|z|) in all...
Let be a sequence of positive numbers and 1 ≤ p < ∞. We consider the space of all power series such that . We give some sufficient conditions for the multiplication operator, , to be unicellular on the Banach space . This generalizes the main results obtained by Lu Fang [1].
We study ergodic properties of stochastic dissipative systems with additive noise. We show that the system is uniformly exponentially ergodic provided the growth of nonlinearity at infinity is faster than linear. The abstract result is applied to the stochastic reaction diffusion equation in with .
We prove uniform factorization results that describe the factorization of compact sets of compact and weakly compact operators via Hölder continuous homeomorphisms having Lipschitz continuous inverses. This yields, in particular, quantitative strengthenings of results of Graves and Ruess on the factorization through -spaces and of Aron, Lindström, Ruess, and Ryan on the factorization through universal spaces of Figiel and Johnson. Our method is based on the isometric version of the Davis-Figiel-Johnson-Pełczyński...