Displaying 61 – 80 of 103

Showing per page

Remarques sur la structure interne des composantes connexes semi-Fredholm

Mostafa Mbekhta (1994)

Studia Mathematica

Soit C(X,Y) l’ensemble des opérateurs fermés à domaines denses dans l’espace de Banach X à valeurs dans l’espace de Banach Y, muni de la métrique du gap. Soit F n = T C ( X , Y ) : T s e m i - F r e d h o l m a v e c i n d ( T ) = n et C n , m = T F n : α ( T ) = n + m , où α (T) est la dimension du noyau de T. Nous montrons que m = 0 j C n , m est un ouvert de F n (et donc ouvert dans C(X,Y)) et que C n , m est dense dans j m C n , j . Nous déduisons quelques résultats de densités. A la fin de se travail nous donnons un exemple d’espace de Banach X tel que, d’une part, F n n’est pas connexe dans B(X) et d’autre part, l’ensemble des...

Representation formulae for (C₀) m-parameter operator semigroups

Mi Zhou, George A. Anastassiou (1996)

Annales Polonici Mathematici

Some general representation formulae for (C₀) m-parameter operator semigroups with rates of convergence are obtained by the probabilistic approach and multiplier enlargement method. These cover all known representation formulae for (C₀) one- and m-parameter operator semigroups as special cases. When we consider special semigroups we recover well-known convergence theorems for multivariate approximation operators.

Representations of Polish groups and continuity

M. Cianfarani, J.-M. Paoli, P. Simonnet, J.-C. Tomasi (2014)

Studia Mathematica

In the first part of the paper, some criteria of continuity of representations of a Polish group in a Banach algebra are given. The second part uses the result of the first part to deduce automatic continuity results of Baire morphisms from Polish groups to locally compact groups or unitary groups. In the final part, the spectrum of an element in the range of a strongly but not norm continuous representation is described.

Representing non-weakly compact operators

Manuel González, Eero Saksman, Hans-Olav Tylli (1995)

Studia Mathematica

For each S ∈ L(E) (with E a Banach space) the operator R(S) ∈ L(E**/E) is defined by R(S)(x** + E) = S**x** + E(x** ∈ E**). We study mapping properties of the correspondence S → R(S), which provides a representation R of the weak Calkin algebra L(E)/W(E) (here W(E) denotes the weakly compact operators on E). Our results display strongly varying behaviour of R. For instance, there are no non-zero compact operators in Im(R) in the case of L 1 and C(0,1), but R(L(E)/W(E)) identifies isometrically with...

Currently displaying 61 – 80 of 103