Remarks on similarity and quasisimilarity of operators
Soit C(X,Y) l’ensemble des opérateurs fermés à domaines denses dans l’espace de Banach X à valeurs dans l’espace de Banach Y, muni de la métrique du gap. Soit et , où α (T) est la dimension du noyau de T. Nous montrons que est un ouvert de (et donc ouvert dans C(X,Y)) et que est dense dans . Nous déduisons quelques résultats de densités. A la fin de se travail nous donnons un exemple d’espace de Banach X tel que, d’une part, n’est pas connexe dans B(X) et d’autre part, l’ensemble des...
Some general representation formulae for (C₀) m-parameter operator semigroups with rates of convergence are obtained by the probabilistic approach and multiplier enlargement method. These cover all known representation formulae for (C₀) one- and m-parameter operator semigroups as special cases. When we consider special semigroups we recover well-known convergence theorems for multivariate approximation operators.
In the first part of the paper, some criteria of continuity of representations of a Polish group in a Banach algebra are given. The second part uses the result of the first part to deduce automatic continuity results of Baire morphisms from Polish groups to locally compact groups or unitary groups. In the final part, the spectrum of an element in the range of a strongly but not norm continuous representation is described.
For each S ∈ L(E) (with E a Banach space) the operator R(S) ∈ L(E**/E) is defined by R(S)(x** + E) = S**x** + E(x** ∈ E**). We study mapping properties of the correspondence S → R(S), which provides a representation R of the weak Calkin algebra L(E)/W(E) (here W(E) denotes the weakly compact operators on E). Our results display strongly varying behaviour of R. For instance, there are no non-zero compact operators in Im(R) in the case of and C(0,1), but R(L(E)/W(E)) identifies isometrically with...