Displaying 781 – 800 of 3198

Showing per page

Factorization of operators on C*-algebras

Narcisse Randrianantoanina (1998)

Studia Mathematica

Let A be a C*-algebra. We prove that every absolutely summing operator from A into 2 factors through a Hilbert space operator that belongs to the 4-Schatten-von Neumann class. We also provide finite-dimensional examples that show that one cannot replace the 4-Schatten-von Neumann class by the p-Schatten-von Neumann class for any p < 4. As an application, we show that there exists a modulus of capacity ε → N(ε) so that if A is a C*-algebra and T Π 1 ( A , 2 ) with π 1 ( T ) 1 , then for every ε >0, the ε-capacity of...

Factorization of rational matrix functions and difference equations

J.S. Rodríguez, L.F. Campos (2013)

Concrete Operators

In the beginning of the twentieth century, Plemelj introduced the notion of factorization of matrix functions. The matrix factorization finds applications in many fields such as in the diffraction theory, in the theory of differential equations and in the theory of singular integral operators. However, the explicit formulas for the factors of the factorization are known only in a few classes of matrices. In the present paper we consider a new approach to obtain the factorization of a rational matrix...

Factorization of unbounded operators on Köthe spaces

T. Terzioğlu, M. Yurdakul, V. Zahariuta (2004)

Studia Mathematica

The main result is that the existence of an unbounded continuous linear operator T between Köthe spaces λ(A) and λ(C) which factors through a third Köthe space λ(B) causes the existence of an unbounded continuous quasidiagonal operator from λ(A) into λ(C) factoring through λ(B) as a product of two continuous quasidiagonal operators. This fact is a factorized analogue of the Dragilev theorem [3, 6, 7, 2] about the quasidiagonal characterization of the relation (λ(A),λ(B)) ∈ ℬ (which means that all...

Factorization theorem for 1 -summing operators

Irene Ferrando (2011)

Czechoslovak Mathematical Journal

We study some classes of summing operators between spaces of integrable functions with respect to a vector measure in order to prove a factorization theorem for 1 -summing operators between Banach spaces.

Factorization through Hilbert space and the dilation of L(X,Y)-valued measures

V. Mandrekar, P. Richard (1993)

Studia Mathematica

We present a general necessary and sufficient algebraic condition for the spectral dilation of a finitely additive L(X,Y)-valued measure of finite semivariation when X and Y are Banach spaces. Using our condition we derive the main results of Rosenberg, Makagon and Salehi, and Miamee without the assumption that X and/or Y are Hilbert spaces. In addition we relate the dilation problem to the problem of factoring a family of operators through a single Hilbert space.

Fegen und Dünnheit mit Anwendungen auf die Laplace-und Wärmeleitungsgleichung

Wolfhard Hansen (1971)

Annales de l'institut Fourier

Several properties of balayage of measures in harmonic spaces are studied. In particular, characterisations of thinness of subsets are given. For the heat equation the following result is obtained: suppose that E = R m + 1 is given the presheaf of solutions of i = 1 m u x i = u x m + 1 and B is a subset of R m × [ - , 0 ] satisfying { ( α x , α 2 t ) : ( x , t ) B , x R m , t R } B for α &gt; 0 arbitrarily small. Then B is thin at 0 if and only if B is polar. Similar result for the Laplace equation. At last the reduced of measures is defined and several approximation theorems on reducing and balayage...

Fejér–Riesz factorizations and the structure of bivariate polynomials orthogonal on the bi-circle

Jeffrey S. Geronimo, Plamen Iliev (2014)

Journal of the European Mathematical Society

We give a complete characterization of the positive trigonometric polynomials Q ( θ , ϕ ) on the bi-circle, which can be factored as Q ( θ , ϕ ) = | p ( e i θ , e i ϕ ) | 2 where p ( z , w ) is a polynomial nonzero for | z | = 1 and | w | 1 . The conditions are in terms of recurrence coefficients associated with the polynomials in lexicographical and reverse lexicographical ordering orthogonal with respect to the weight 1 4 π 2 Q ( θ , ϕ ) on the bi-circle. We use this result to describe how specific factorizations of weights on the bi-circle can be translated into identities relating...

Fermi Golden Rule, Feshbach Method and embedded point spectrum

Jan Dereziński (1998/1999)

Séminaire Équations aux dérivées partielles

A method to study the embedded point spectrum of self-adjoint operators is described. The method combines the Mourre theory and the Limiting Absorption Principle with the Feshbach Projection Method. A more complete description of this method is contained in a joint paper with V. Jak s ˇ ić, where it is applied to a study of embedded point spectrum of Pauli-Fierz Hamiltonians.

Currently displaying 781 – 800 of 3198