Displaying 841 – 860 of 3198

Showing per page

Fuglede-type decompositions of representations

Marek Kosiek (2002)

Studia Mathematica

It is shown that reducing bands of measures yield decompositions not only of an operator representation itself, but also of its commutant. This has many consequences for commuting Hilbert space representations and for commuting operators on Hilbert spaces. Among other things, it enables one to construct a Lebesgue-type decomposition of several commuting contractions without assuming any von Neumann-type inequality.

Function theory in sectors

Brian Jefferies (2004)

Studia Mathematica

It is shown that there is a one-to-one correspondence between uniformly bounded holomorphic functions of n complex variables in sectors of ℂⁿ, and uniformly bounded functions of n+1 real variables in sectors of n + 1 that are monogenic functions in the sense of Clifford analysis. The result is applied to the construction of functional calculi for n commuting operators, including the example of differentiation operators on a Lipschitz surface in n + 1 .

Functional calculi, regularized semigroups and integrated semigroups

Ralph deLaubenfels, Mustapha Jazar (1999)

Studia Mathematica

We characterize closed linear operators A, on a Banach space, for which the corresponding abstract Cauchy problem has a unique polynomially bounded solution for all initial data in the domain of A n , for some nonnegative integer n, in terms of functional calculi, regularized semigroups, integrated semigroups and the growth of the resolvent in the right half-plane. We construct a semigroup analogue of a spectral distribution for such operators, and an extended functional calculus: When the abstract...

Functional calculus for a class of unbounded linear operators on some non-archimedean Banach spaces

Dodzi Attimu, Toka Diagana (2009)

Commentationes Mathematicae Universitatis Carolinae

This paper is mainly concerned with extensions of the so-called Vishik functional calculus for analytic bounded linear operators to a class of unbounded linear operators on c 0 . For that, our first task consists of introducing a new class of linear operators denoted W ( c 0 ( J , ω , 𝕂 ) ) and next we make extensive use of such a new class along with the concept of convergence in the sense of resolvents to construct a functional calculus for a large class of unbounded linear operators.

Functional models and asymptotically orthonormal sequences

Isabelle Chalendar, Emmanuel Fricain, Dan Timotin (2003)

Annales de l’institut Fourier

Suppose H 2 is the Hardy space of the unit disc in the complex plane, while Θ is an inner function. We give conditions for a sequence of normalized reproducing kernels in the model space K Θ = H 2 Θ H 2 to be asymptotically close to an orthonormal sequence. The completeness problem is also investigated.

Functions of operators and their commutators in perturbation theory

Yu. Farforovskaya (1994)

Banach Center Publications

This paper shows some directions of perturbation theory for Lipschitz functions of selfadjoint and normal operators, without giving precise proofs. Some of the ideas discussed are explained informally or for the finite-dimensional case. Several unsolved problems are mentioned.

Currently displaying 841 – 860 of 3198