Displaying 861 – 880 of 3198

Showing per page

General results on the eigenvalues of operators with gaps, arising from both ends of the gaps. Application to Dirac operators

Jean Dolbeault, Maria Esteban, Eric Séré (2006)

Journal of the European Mathematical Society

This paper is concerned with an extension and reinterpretation of previous results on the variational characterization of eigenvalues in gaps of the essential spectrum of self-adjoint operators. We state two general abstract results on the existence of eigenvalues in the gap and a continuation principle. Then these results are applied to Dirac operators in order to characterize simultaneously eigenvalues corresponding to electronic and positronic bound states.

Généralisation d'un théorème de Haagerup

Ferdaous Kellil, Guy Rousseau (2005)

Studia Mathematica

Let G be a group of automorphisms of a tree X (with set of vertices S) and H a kernel on S × S invariant under the action of G. We want to give an estimate of the l r -operator norm (1 ≤ r ≤ 2) of the operator associated to H in terms of a norm for H. This was obtained by U. Haagerup when G is the free group acting simply transitively on a homogeneous tree. Our result is valid when X is a locally finite tree and one of the orbits of G is the set of vertices at even distance from a given vertex; a technical...

Generalizations of Cesàro means and poles of the resolvent

Laura Burlando (2004)

Studia Mathematica

An improvement of the generalization-obtained in a previous article [Bu1] by the author-of the uniform ergodic theorem to poles of arbitrary order is derived. In order to answer two natural questions suggested by this result, two examples are also given. Namely, two bounded linear operators T and A are constructed such that n - 2 T converges uniformly to zero, the sum of the range and the kernel of 1-T being closed, and n - 3 k = 0 n - 1 A k converges uniformly, the sum of the range of 1-A and the kernel of (1-A)² being...

Generalized a-Weyl's theorem and the single-valued extension property.

Mohamed Amouch (2006)

Extracta Mathematicae

Let T be a bounded linear operator acting on a Banach space X such that T or T* has the single-valued extension property (SVEP). We prove that the spectral mapping theorem holds for the semi-essential approximate point spectrum σSBF-+(T); and we show that generalized a-Browder's theorem holds for f(T) for every analytic function f defined on an open neighbourhood U of σ(T): Moreover, we give a necessary and sufficient condition for such T to obey generalized a-Weyl's theorem. An application is given...

Generalized D-Symmetric Operators I

Bouali, S., Ech-chad, M. (2008)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary: 47B47, 47B10; secondary 47A30.Let H be an infinite-dimensional complex Hilbert space and let A, B ∈ L(H), where L(H) is the algebra of operators on H into itself. Let δAB: L(H) → L(H) denote the generalized derivation δAB(X) = AX − XB. This note will initiate a study on the class of pairs (A,B) such that [‾(R(δAB))] = [‾(R(δB*A*))]; i.e. [‾(R(δAB))] is self-adjoint.

Generalized eigenfunction expansions and spectral decompositions

Mihai Putinar (1997)

Banach Center Publications

The paper relates several generalized eigenfunction expansions to classical spectral decomposition properties. From this perspective one explains some recent results concerning the classes of decomposable and generalized scalar operators. In particular a universal dilation theory and two different functional models for related classes of operators are presented.

Currently displaying 861 – 880 of 3198