Displaying 81 – 100 of 199

Showing per page

The Operators Aγ = γA + -γA for a Class of Nondissipative Operators A with a Limit of the Corresponding Correlation Function

Borisova, Galina (2003)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary 47A48, Secondary 60G12In this work we present the operators Aγ = γA + -γA with Re γ = 1/2 in the case of an operator A from the class of nondissipative operators generating nonselfadjoint curves, whose correlation functions have a limit as t → ±∞. The asympthotics of the stationary curves e^(itAγ)f as t → ±∞ onto the absolutely continuous subspace of Aγ are obtained. These asymptotics and the obtained asymptotics in [9] of the nondissipative curves...

The Order on Projections in C*-Algebras of Real Rank Zero

Tristan Bice (2012)

Bulletin of the Polish Academy of Sciences. Mathematics

We prove a number of fundamental facts about the canonical order on projections in C*-algebras of real rank zero. Specifically, we show that this order is separative and that arbitrary countable collections have equivalent (in terms of their lower bounds) decreasing sequences. Under the further assumption that the order is countably downwards closed, we show how to characterize greatest lower bounds of finite collections of projections, and their existence, using the norm and spectrum of simple...

The Ornstein-Uhlenbeck generator perturbed by the gradient of a potential

Giuseppe Da Prato (1998)

Bollettino dell'Unione Matematica Italiana

Si considera, in uno spazio di Hilbert H l'operatore lineare M 0 φ = 1 / 2 Tr D 2 φ + x , A D φ - D U x , D φ , dove A è un operatore negative autoaggiunto e U è un potenziale che soddisfa a opportune condizioni di integrabilità. Si dimostra con un metodo analitico che M 0 è essenzialmente autoaggiunto in uno spazio L 2 H , ν e si caratterizza il dominio della sua chiusura M come sottospazio di W 2 , 2 H , ν . Si studia inoltre la «spectral gap property» del semigruppo generato da M .

The Positive Supercyclicity Theorem.

F. León Saavedra (2004)

Extracta Mathematicae

We present some recent results related with supercyclic operators, also some of its consequences. We will finalize with new related questions.

The power boundedness and resolvent conditions for functions of the classical Volterra operator

Yuri Lyubich (2010)

Studia Mathematica

Let ϕ(z) be an analytic function in a disk |z| < ρ (in particular, a polynomial) such that ϕ(0) = 1, ϕ(z)≢ 1. Let V be the operator of integration in L p ( 0 , 1 ) , 1 ≤ p ≤ ∞. Then ϕ(V) is power bounded if and only if ϕ’(0) < 0 and p = 2. In this case some explicit upper bounds are given for the norms of ϕ(V)ⁿ and subsequent differences between the powers. It is shown that ϕ(V) never satisfies the Ritt condition but the Kreiss condition is satisfied if and only if ϕ’(0) < 0, at least in the polynomial...

The single-point spectrum operators satisfying Ritt's resolvent condition

Yu. Lyubich (2001)

Studia Mathematica

It is shown that an operator with the properties mentioned in the title does exist in the space L p ( 0 , 1 ) , 1 ≤ p ≤ ∞. The maximal sector for the extended resolvent condition can be prescribed a priori jointly with the corresponding order of the exponential growth of the resolvent in the complementary sector.

Currently displaying 81 – 100 of 199