N Congruency of Operators
The properties of the bounded linear operators on a Hilbert space which satisfy the condition where is unitary, are studied in relation to those of normal, hyponormal, quasinormal and subnormal operators.
We show that there are linear operators on Hilbert space that have n-dimensional subspaces with dense orbit, but no (n-1)-dimensional subspaces with dense orbit. This leads to a new class of operators, called the n-supercyclic operators. We show that many cohyponormal operators are n-supercyclic. Furthermore, we prove that for an n-supercyclic operator, there are n circles centered at the origin such that every component of the spectrum must intersect one of these circles.
We prove that for normal operators the generalized commutator approaches zero when tends to zero in the norm of the Schatten-von Neumann class with and varies in a bounded set of such a class.
We show that every class A operator has a scalar extension. In particular, such operators with rich spectra have nontrivial invariant subspaces. Also we give some spectral properties of the scalar extension of a class A operator. Finally, we show that every class A operator is nonhypertransitive.
A review of known decompositions of pairs of isometries is given. A new, finer decomposition and its properties are presented.
The purpose of the paper is to introduce and study a new class of operators on semi-Hilbertian spaces, i.e. spaces generated by positive semi-definite sesquilinear forms. Let be a Hilbert space and let be a positive bounded operator on . The semi-inner product , , induces a semi-norm . This makes into a semi-Hilbertian space. An operator is said to be --normal if for some positive integers and .
Let T be a bounded linear operator on a complex Hilbert space . For positive integers n and k, an operator T is called (n,k)-quasiparanormal if for x ∈ . The class of (n,k)-quasiparanormal operators contains the classes of n-paranormal and k-quasiparanormal operators. We consider some properties of (n,k)-quasiparanormal operators: (1) inclusion relations and examples; (2) a matrix representation and SVEP (single valued extension property); (3) ascent and Bishop’s property (β); (4) quasinilpotent...