Loading [MathJax]/extensions/MathZoom.js
Displaying 121 –
140 of
194
Classically, Hardy’s inequality enables to estimate the spectral gap of a one-dimensional diffusion up to a factor belonging to . The goal of this paper is to better understand the latter factor, at least in a symmetric setting. In particular, we will give an asymptotical criterion implying that its value is exactly 4. The underlying argument is based on a semi-explicit functional for the spectral gap, which is monotone in some rearrangement of the data. To find it will resort to some regularity...
In the current work a generalization of the famous Weyl-Kodaira inversion formulas for the case of self-adjoint differential vector-operators is proved. A formula for spectral resolutions over an analytical defining set of solutions is discussed. The article is the first part of the planned two-part survey on the structural spectral theory of self-adjoint differential vector-operators in matrix Hilbert spaces.
Let be the symmetric operator given by the restriction of to , where is a self-adjoint operator on the Hilbert space and is a linear dense set which is closed with respect to the graph norm on , the operator domain of . We show that any self-adjoint extension of such that can be additively decomposed by the sum , where both the operators and take values in the strong dual of . The operator is the closed extension of to the whole whereas is explicitly written in terms...
A generalization of the Carleman criterion for selfadjointness of Jacobi matrices to the case of symmetric matrices with finite rows is established. In particular, a new proof of the Carleman criterion is found. An extension of Jørgensen's criterion for selfadjointness of symmetric operators with "almost invariant" subspaces is obtained. Some applications to hyponormal weighted shifts are given.
We study a family of commuting selfadjoint operators , which satisfy, together with the operators of the family , semilinear relations , (, , are fixed Borel functions). The developed technique is used to investigate representations of deformations of the universal enveloping algebra U(so(3)), in particular, of some real forms of the Fairlie algebra .
We prove that the absolutely continuous part of the periodic Jacobi operator does not change (modulo unitary equivalence) under additive perturbations by compact Jacobi operators with weights and diagonals defined in terms of the Stolz classes of slowly oscillating sequences. This result substantially generalizes many previous results, e.g., the one which can be obtained directly by the abstract trace class perturbation theorem of Kato-Rosenblum. It also generalizes several results concerning perturbations...
Given a Hilbert space with a Borel probability measure , we prove the -dissipativity in of a Kolmogorov operator that is a perturbation, not necessarily of gradient type, of an Ornstein-Uhlenbeck operator.
We describe the spectra of Jacobi operators J with some irregular entries. We divide ℝ into three “spectral regions” for J and using the subordinacy method and asymptotic methods based on some particular discrete versions of Levinson’s theorem we prove the absolute continuity in the first region and the pure pointness in the second. In the third region no information is given by the above methods, and we call it the “uncertainty region”. As an illustration, we introduce and analyse the OP family...
Currently displaying 121 –
140 of
194