Operators with Absolutely Bounded Matrices.
Motivated by a great deal of interest in operators that may not be densely defined and do not generate global integrated semigroups, we establish general perturbation theorems for local integrated semigroups and describe their applications to local complete second order abstract differential equations.
We distinguish a class of unbounded operators in , r ≥ 1, related to the self-adjoint operators in ². For these operators we prove a kind of individual ergodic theorem, replacing the classical Cesàro averages by Borel summability. The result is equivalent to a version of Gaposhkin’s criterion for the a.e. convergence of operators. In the proof, the theory of martingales and interpolation in -spaces are applied.
Sets of bounded linear operators , ⊂ ℬ(H) (ℋ is a Hilbert space) are similar if there exists an invertible (in ℬ(H)) operator G such that . A bounded operator is scalar if it is similar to a normal operator. is jointly scalar if there exists a set ⊂ ℬ(H) of normal operators such that and are similar. is separately scalar if all its elements are scalar. Some necessary and sufficient conditions for joint scalarity of a separately scalar abelian set of Hilbert space operators are presented (Theorems...
Complete and σ-complete Boolean algebras of projections acting in a Banach space were introduced by W. Bade in the 1950's. A basic fact is that every complete Boolean algebra of projections is necessarily a closed set for the strong operator topology. Here we address the analogous question for σ-complete Boolean algebras: are they always a sequentially closed set for the strong operator topology? For the atomic case the answer is shown to be affirmative. For the general case, we develop criteria...
We construct in this paper some simultaneous projective resolutions of the identity operator which we later use to obtain certain new results on quasi-complementation property and Markushevich bases.
In 1971, Allan Sinclair proved that for a hermitian element h of a Banach algebra and λ complex we have ∥λ + h∥ = r(λ + h), where r denotes the spectral radius. Using Levin's subordination theory for entire functions of exponential type, we extend this result locally to a much larger class of generalized spectral operators. This fundamental result improves many earlier results due to Gelfand, Hille, Colojoară-Foiaş, Vidav, Dowson, Dowson-Gillespie-Spain, Crabb-Spain, I. & V. Istrăţescu, Barnes,...
We develop a spectral-theoretic harmonic analysis for an arbitrary UMD space X. Our approach utilizes the spectral decomposability of X and the multiplier theory for to provide on the space X itself analogues of the classical themes embodied in the Littlewood-Paley Theorem, the Strong Marcinkiewicz Multiplier Theorem, and the M. Riesz Property. In particular, it is shown by spectral integration that classical Marcinkiewicz multipliers have associated transforms acting on X.
Let U be a trigonometrically well-bounded operator on a Banach space , and denote by the sequence of (C,2) weighted discrete ergodic averages of U, that is, . We show that this sequence of weighted ergodic averages converges in the strong operator topology to an idempotent operator whose range is x ∈ : Ux = x, and whose null space is the closure of (I - U). This result expands the scope of the traditional Ergodic Theorem, and thereby serves as a link between Banach space spectral theory and...
This paper gives a survey of some recent developments in the spectral theory of linear operators on Banach spaces in which the Hilbert transform and its abstract analogues play a fundamental role.