Spectral projections, semigroups of operators, and the Laplace transform
On reflexive spaces trigonometrically well-bounded operators have an operator-ergodic-theory characterization as the invertible operators U such that . (*) Trigonometrically well-bounded operators permeate many settings of modern analysis, and this note highlights the advances in both their spectral theory and operator ergodic theory made possible by a recent rekindling of interest in the R. C. James inequalities for super-reflexive spaces. When the James inequalities are combined with Young-Stieltjes...
It is shown that the sum and the product of two commuting Banach space operators with Dunford’s property have the single-valued extension property.
Suppose A is a (possibly unbounded) linear operator on a Banach space. We show that the following are equivalent. (1) A is well-bounded on [0,∞). (2) -A generates a strongly continuous semigroup such that is the Laplace transform of a Lipschitz continuous family of operators that vanishes at 0. (3) -A generates a strongly continuous differentiable semigroup and ∃ M < ∞ such that , ∀s > 0, n ∈ ℕ ∪ 0. (4) -A generates a strongly continuous holomorphic semigroup that is O(|z|) in all...
A unital commutative Banach algebra is spectrally separable if for any two distinct non-zero multiplicative linear functionals φ and ψ on it there exist a and b in such that ab = 0 and φ(a)ψ(b) ≠ 0. Spectrally separable algebras are a special subclass of strongly harmonic algebras. We prove that a unital commutative Banach algebra is spectrally separable if there are enough elements in such that the corresponding multiplication operators on have the decomposition property (δ). On the other hand,...
The aim is to investigate certain spectral properties, such as decomposability, the spectral mapping property and the Lyubich-Matsaev property, for linear differential operators with constant coefficients ( and more general Fourier multiplier operators) acting in . The criteria developed for such operators are quite general and p-dependent, i.e. they hold for a range of p in an interval about 2 (which is typically not (1,∞)). The main idea is to construct appropriate functional calculi: this is...
The first author showed in [18] that the Hilbert transform lies in the closed convex hull of dyadic singular operators - so called dyadic shifts. We show here that the same is true in any Rn - the Riesz transforms can be obtained as the results of averaging of dyadic shifts. The goal of this paper is almost entirely methodological: we simplify the previous approach, rather than presenting the new one.[Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations,...