Displaying 141 – 160 of 212

Showing per page

Some results on the class of σ -unbounded Dunford-Pettis operators

Noufissa Hafidi, Jawad H'michane (2021)

Commentationes Mathematicae Universitatis Carolinae

We introduce and study the class of unbounded Dunford--Pettis operators. As consequences, we give basic properties and derive interesting results about the duality, domination problem and relationship with other known classes of operators.

The Banach lattice C[0,1] is super d-rigid

Y. A. Abramovich, A. K. Kitover (2003)

Studia Mathematica

The following properties of C[0,1] are proved here. Let T: C[0,1] → Y be a disjointness preserving bijection onto an arbitrary vector lattice Y. Then the inverse operator T - 1 is also disjointness preserving, the operator T is regular, and the vector lattice Y is order isomorphic to C[0,1]. In particular if Y is a normed lattice, then T is also automatically norm continuous. A major step needed for proving these properties is provided by Theorem 3.1 asserting that T satisfies some technical condition...

The order σ -complete vector lattice of AM-compact operators

Belmesnaoui Aqzzouz, Redouane Nouira (2009)

Czechoslovak Mathematical Journal

We establish necessary and sufficient conditions under which the linear span of positive AM-compact operators (in the sense of Fremlin) from a Banach lattice E into a Banach lattice F is an order σ -complete vector lattice.

Currently displaying 141 – 160 of 212