-Scalar operators on cyclic spaces
Let with a,b ≥ 2. We consider the C₀-semigroups generated by this operator on the spaces of continuous functions, respectively square integrable functions. The connection between these semigroups together with suitable approximation processes is studied. Also, some qualitative and quantitative properties are derived.
A Banach space has Pełczyński’s property (V) if for every Banach space every unconditionally converging operator is weakly compact. H. Pfitzner proved that -algebras have Pełczyński’s property (V). In the preprint (Krulišová, (2015)) the author explores possible quantifications of the property (V) and shows that spaces for a compact Hausdorff space enjoy a quantitative version of the property (V). In this paper we generalize this result by quantifying Pfitzner’s theorem. Moreover, we...
We introduce by means of reproducing kernel theory and decomposition in orthogonal polynomials canonical correspondences between an interacting Fock space a reproducing kernel Hilbert space and a square integrable functions space w.r.t. a cylindrical measure. Using this correspondences we investigate the structure of the infinite dimensional canonical commutation relations. In particular we construct test functions spaces, distributions spaces and a quantization map which generalized the work of...
We study Carleson measures and Toeplitz operators on the class of so-called small weighted Bergman spaces, introduced recently by Seip. A characterization of Carleson measures is obtained which extends Seip’s results from the unit disk of to the unit ball of . We use this characterization to give necessary and sufficient conditions for the boundedness and compactness of Toeplitz operators. Finally, we study the Schatten classes membership of Toeplitz operators for .
We describe the centered weighted composition operators on in terms of their defining symbols. Our characterizations extend Embry-Wardrop-Lambert’s theorem on centered composition operators.