Trace Formulas of Gelfand--levitan Type
Let (A,e) and (V,K) be an order-unit space and a base-norm space in spectral duality, as in noncommutative spectral theory of Alfsen and Shultz. Let t be a norm lower semicontinuous trace on A, and let φ be a nonnegative convex function on ℝ. It is shown that the mapping a → t(φ(a)) is convex on A. Moreover, the mapping is shown to be nondecreasing if so is φ. Some other similar statements concerning traces and real-valued functions are also obtained.
A transference theorem for convolution operators is proved for certain families of one-dimensional hypergroups.
Dans cet article on étudie en premier lieu la résolvante (le noyau de Green) d’un opérateur agissant sur un arbre localement fini. Ce noyau est supposé invariant par un groupe d’automorphismes de l’arbre. On donne l’expression générique de cette résolvante et on établit des simplifications sous différentes hypothèses sur .En second lieu on introduit la transformation de Poisson qui associe à une mesure additive finie sur l’espace des bouts de l’arbre une fonction propre de l’ opérateur. On...
We study convolution operators bounded on the non-normable Lorentz spaces of the real line and the torus. Here 0 < q < 1. On the real line, such an operator is given by convolution with a discrete measure, but on the torus a convolutor can also be an integrable function. We then give some necessary and some sufficient conditions for a measure or a function to be a convolutor on . In particular, when the positions of the atoms of a discrete measure are linearly independent over the rationals,...
2000 Mathematics Subject Classification: Primary 47A48, Secondary 60G12.In this paper classes of K^r -operators are considered – the classes of bounded and unbounded operators A with equal domains of A and A*, finite dimensional imaginary parts and presented as a coupling of a dissipative operator and an antidissipative one with real absolutely continuous spectra and the class of unbounded dissipative K^r -operators A with different domains of A and A* and with real absolutely continuous spectra....
Some results concerning triangularization of some operators on locally convex spaces are established.
Suppose that μ is a Radon measure on , which may be non-doubling. The only condition assumed on μ is a growth condition, namely, there is a constant C₀ > 0 such that for all x ∈ supp(μ) and r > 0, μ(B(x,r)) ≤ C₀rⁿ, where 0 < n ≤ d. The authors provide a theory of Triebel-Lizorkin spaces for 1 < p < ∞, 1 ≤ q ≤ ∞ and |s| < θ, where θ > 0 is a real number which depends on the non-doubling measure μ, C₀, n and d. The method does not use the vector-valued maximal function inequality...