Displaying 281 – 300 of 3251

Showing per page

An introduction to Rota’s universal operators: properties, old and new examples and future issues

Carl C. Cowen, Eva A. Gallardo-Gutiérrez (2016)

Concrete Operators

The Invariant Subspace Problem for Hilbert spaces is a long-standing question and the use of universal operators in the sense of Rota has been an important tool for studying such important problem. In this survey, we focus on Rota’s universal operators, pointing out their main properties and exhibiting some old and recent examples.

An M q ( ) -functional calculus for power-bounded operators on certain UMD spaces

Earl Berkson, T. A. Gillespie (2005)

Studia Mathematica

For 1 ≤ q < ∞, let q ( ) denote the Banach algebra consisting of the bounded complex-valued functions on the unit circle having uniformly bounded q-variation on the dyadic arcs. We describe a broad class ℐ of UMD spaces such that whenever X ∈ ℐ, the sequence space ℓ²(ℤ,X) admits the classes q ( ) as Fourier multipliers, for an appropriate range of values of q > 1 (the range of q depending on X). This multiplier result expands the vector-valued Marcinkiewicz Multiplier Theorem in the direction q >...

An operator characterization of L p -spaces in a class of Orlicz spaces

Maciej Burnecki (2008)

Banach Center Publications

We consider an embedding of the group of invertible transformations of [0,1] into the algebra of bounded linear operators on an Orlicz space. We show that if this embedding preserves the group action then the Orlicz space is an L p -space for some 1 ≤ p < ∞.

An operator-theoretic approach to truncated moment problems

Raúl Curto (1997)

Banach Center Publications

We survey recent developments in operator theory and moment problems, beginning with the study of quadratic hyponormality for unilateral weighted shifts, its connections with truncated Hamburger, Stieltjes, Hausdorff and Toeplitz moment problems, and the subsequent proof that polynomially hyponormal operators need not be subnormal. We present a general elementary approach to truncated moment problems in one or several real or complex variables, based on matrix positivity and extension. Together...

An overview of some recent developments on the Invariant Subspace Problem

Isabelle Chalendar, Jonathan R. Partington (2013)

Concrete Operators

This paper presents an account of some recent approaches to the Invariant Subspace Problem. It contains a brief historical account of the problem, and some more detailed discussions of specific topics, namely, universal operators, the Bishop operators, and Read’s Banach space counter-example involving a finitely strictly singular operator.

Currently displaying 281 – 300 of 3251