Displaying 321 – 340 of 3251

Showing per page

Approximation and asymptotics of eigenvalues of unbounded self-adjoint Jacobi matrices acting in l 2 by the use of finite submatrices

Maria Malejki (2010)

Open Mathematics

We consider the problem of approximation of eigenvalues of a self-adjoint operator J defined by a Jacobi matrix in the Hilbert space l 2(ℕ) by eigenvalues of principal finite submatrices of an infinite Jacobi matrix that defines this operator. We assume the operator J is bounded from below with compact resolvent. In our research we estimate the asymptotics (with n → ∞) of the joint error of approximation for the eigenvalues, numbered from 1 to N; of J by the eigenvalues of the finite submatrix J...

Approximation and entropy numbers of compact Sobolev embeddings

Leszek Skrzypczak (2006)

Banach Center Publications

The aim of the paper is twofold. First we give a survey of some recent results concerning the asymptotic behavior of the entropy and approximation numbers of compact Sobolev embeddings. Second we prove new estimates of approximation numbers of embeddings of weighted Besov spaces in the so called limiting case.

Approximation of eigenvalues for unbounded Jacobi matrices using finite submatrices

Anne Monvel, Lech Zielinski (2014)

Open Mathematics

We consider an infinite Jacobi matrix with off-diagonal entries dominated by the diagonal entries going to infinity. The corresponding self-adjoint operator J has discrete spectrum and our purpose is to present results on the approximation of eigenvalues of J by eigenvalues of its finite submatrices.

Approximation par des opérateurs compacts ou faiblement compacts à valeurs dans C ( X )

Hicham Fakhoury (1977)

Annales de l'institut Fourier

Soient W = L ' ( μ ) et V = C ( X ) . Il existe une application (non linéaire) normiquement continue T P ( T ) de l’espace des opérateurs bornés de W dans V sur l’espace des opérateurs compacts (resp. faiblement compacts) de W dans V telle que T - P ( T ) coïncide avec la distance de T au sous-espace formé des opérateurs compacts (resp. faiblement compacts). Pour un opérateur donné T de W dans V on étudie les propriétés de l’ensemble K ( T ) (resp. F ( T ) ) des opérateurs compacts (resp. faiblement compacts) tel que pour tout R de K ( T ) (resp. K ( T ) ) la quantité...

Approximation properties determined by operator ideals and approximability of homogeneous polynomials and holomorphic functions

Sonia Berrios, Geraldo Botelho (2012)

Studia Mathematica

Given an operator ideal ℐ, a Banach space E has the ℐ-approximation property if the identity operator on E can be uniformly approximated on compact subsets of E by operators belonging to ℐ. In this paper the ℐ-approximation property is studied in projective tensor products, spaces of linear functionals, spaces of linear operators/homogeneous polynomials, spaces of holomorphic functions and their preduals.

Currently displaying 321 – 340 of 3251