The search session has expired. Please query the service again.

Displaying 1161 – 1180 of 3251

Showing per page

Inversion d’un opérateur de Toeplitz tronqué à symbole matriciel et théorèmes-limite de Szegö

Jean Chanzy (2006)

Annales mathématiques Blaise Pascal

Ce travail est une étude théorique d’opérateurs de Toeplitz dont le symbole est une fonction matricielle régulière définie positive partout sur le tore à une dimension. Nous proposons d’abord une formule d’inversion exacte pour un opérateur de Toeplitz à symbole matriciel, démontrée au moyen d’un théorème établi en annexe et donnant la solution du problème de la prédiction relatif à un passé fini pour un processus stationnaire du second ordre. Nous établissons ensuite, à partir de cet inverse, un...

Invertibility preserving linear mappings into M₂(ℂ)

M. H. Shirdarreh Haghighi (2008)

Studia Mathematica

We study discontinuous invertibility preserving linear mappings from a Banach algebra into the algebra of n × n matrices and give an explicit representation of such a mapping when n = 2.

Invertible and normal composition operators on the Hilbert Hardy space of a half–plane

Valentin Matache (2016)

Concrete Operators

Operators on function spaces of form Cɸf = f ∘ ɸ, where ɸ is a fixed map are called composition operators with symbol ɸ. We study such operators acting on the Hilbert Hardy space over the right half-plane and characterize the situations when they are invertible, Fredholm, unitary, and Hermitian. We determine the normal composition operators with inner, respectively with Möbius symbol. In select cases, we calculate their spectra, essential spectra, and numerical ranges.

Isolated points of spectrum of k-quasi-*-class A operators

Salah Mecheri (2012)

Studia Mathematica

Let T be a bounded linear operator on a complex Hilbert space H. In this paper we introduce a new class, denoted *, of operators satisfying T * k ( | T ² | - | T * | ² ) T k 0 where k is a natural number, and we prove basic structural properties of these operators. Using these results, we also show that if E is the Riesz idempotent for a non-zero isolated point μ of the spectrum of T ∈ *, then E is self-adjoint and EH = ker(T-μ) = ker(T-μ)*. Some spectral properties are also presented.

Isometric composition operators on weighted Dirichlet space

Shi-An Han, Ze-Hua Zhou (2016)

Czechoslovak Mathematical Journal

We investigate isometric composition operators on the weighted Dirichlet space 𝒟 α with standard weights ( 1 - | z | 2 ) α , α > - 1 . The main technique used comes from Martín and Vukotić who completely characterized the isometric composition operators on the classical Dirichlet space 𝒟 . We solve some of these but not in general. We also investigate the situation when 𝒟 α is equipped with another equivalent norm.

Isometries between groups of invertible elements in Banach algebras

Osamu Hatori (2009)

Studia Mathematica

We show that if T is an isometry (as metric spaces) from an open subgroup of the group of invertible elements in a unital semisimple commutative Banach algebra A onto a open subgroup of the group of invertible elements in a unital Banach algebra B, then T ( 1 ) - 1 T is an isometrical group isomorphism. In particular, T ( 1 ) - 1 T extends to an isometrical real algebra isomorphism from A onto B.

Isometries of Musielak-Orlicz spaces II

J. Jamison, A. Kamińska, Pei-Kee Lin (1993)

Studia Mathematica

A characterization of isometries of complex Musielak-Orlicz spaces L Φ is given. If L Φ is not a Hilbert space and U : L Φ L Φ is a surjective isometry, then there exist a regular set isomorphism τ from (T,Σ,μ) onto itself and a measurable function w such that U(f) = w ·(f ∘ τ) for all f L Φ . Isometries of real Nakano spaces, a particular case of Musielak-Orlicz spaces, are also studied.

Currently displaying 1161 – 1180 of 3251