Displaying 721 – 740 of 2510

Showing per page

Coupled fixed point theorems for (α, φ) g -contractive type mappings in partially ordered G-metric spaces

Jianhua Chen, Xianjiu Huang (2015)

Open Mathematics

In this paper, we introduce a new concept of (α, φ)g-contractive type mappings and establish coupled coincidence and coupled common fixed point theorems for such mappings in partially ordered G-metric spaces. The results on fixed point theorems are generalizations of some existing results.We also give some examples to illustrate the usability of the obtained results.

Coupled fixed points of mixed monotone operators on probabilistic Banach spaces

Ismat Beg, Abdul Latif, Rashid Ali, Akbar Azam (2001)

Archivum Mathematicum

The existence of minimal and maximal fixed points for monotone operators defined on probabilistic Banach spaces is proved. We obtained sufficient conditions for the existence of coupled fixed point for mixed monotone condensing multivalued operators.

Couples of lower and upper slopes and resonant second order ordinary differential equations with nonlocal boundary conditions

Jean Mawhin, Katarzyna Szymańska-Dębowska (2016)

Mathematica Bohemica

A couple ( σ , τ ) of lower and upper slopes for the resonant second order boundary value problem x ' ' = f ( t , x , x ' ) , x ( 0 ) = 0 , x ' ( 1 ) = 0 1 x ' ( s ) d g ( s ) , with g increasing on [ 0 , 1 ] such that 0 1 d g = 1 , is a couple of functions σ , τ C 1 ( [ 0 , 1 ] ) such that σ ( t ) τ ( t ) for all t [ 0 , 1 ] , σ ' ( t ) f ( t , x , σ ( t ) ) , σ ( 1 ) 0 1 σ ( s ) d g ( s ) , τ ' ( t ) f ( t , x , τ ( t ) ) , τ ( 1 ) 0 1 τ ( s ) d g ( s ) , in the stripe 0 t σ ( s ) d s x 0 t τ ( s ) d s and t [ 0 , 1 ] . It is proved that the existence of such a couple ( σ , τ ) implies the existence and localization of a solution to the boundary value problem. Multiplicity results are also obtained.

Covering dimension and differential inclusions

Giovanni Anello (2000)

Commentationes Mathematicae Universitatis Carolinae

In this paper we shall establish a result concerning the covering dimension of a set of the type { x X : Φ ( x ) Ψ ( x ) } , where Φ , Ψ are two multifunctions from X into Y and X , Y are real Banach spaces. Moreover, some applications to the differential inclusions will be given.

Decomposable hulls of multifunctions

Andrzej Nowak, Celina Rom (2002)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Let F be a multifunction with values in Lₚ(Ω, X). In this note, we study which regularity properties of F are preserved when we consider the decomposable hull of F.

Degree of T-equivariant maps in ℝⁿ

Joanna Janczewska, Marcin Styborski (2007)

Banach Center Publications

A special case of G-equivariant degree is defined, where G = ℤ₂, and the action is determined by an involution T : p q p q given by T(u,v) = (u,-v). The presented construction is self-contained. It is also shown that two T-equivariant gradient maps f , g : ( , S n - 1 ) ( , 0 ) are T-homotopic iff they are gradient T-homotopic. This is an equivariant generalization of the result due to Parusiński.

Degree theory for VMO maps on metric spaces

Francesco Uguzzoni, Ermanno Lanconelli (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We construct a degree theory for Vanishing Mean Oscillation functions in metric spaces, following some ideas of Brezis & Nirenberg. The underlying sets of our metric spaces are bounded open subsets of N and their boundaries. Then, we apply our results in order to analyze the surjectivity properties of the L -harmonic extensions of VMO vector-valued functions. The operators L we are dealing with are second order linear differential operators sum of squares of vector fields satisfying the hypoellipticity...

Currently displaying 721 – 740 of 2510