-cross products and a generalized quantum mechanical -body problem.
It is known that is not amenable for p = 1,2,∞, but whether or not is amenable for p ∈ (1,∞) ∖ 2 is an open problem. We show that, if is amenable for p ∈ (1,∞), then so are and . Moreover, if is amenable so is for any index set and for any infinite-dimensional -space E; in particular, if is amenable for p ∈ (1,∞), then so is . We show that is not amenable for p = 1,∞, but also that our methods fail us if p ∈ (1,∞). Finally, for p ∈ (1,2) and a free ultrafilter over ℕ, we exhibit...
Let X be a closed subspace of B(H) for some Hilbert space H. In [9], Pisier introduced Sp [X] (1 ≤ p ≤ +∞) by setting Sp [X] = (S∞ [X] , S1 [X])θ , (where θ =1/p , S∞ [X] = S∞ ⊗min X and S1 [X] = S1 ⊗∧ X) and showed that there are p−matricially normed spaces. In this paper we prove that conversely, if X is a p−matricially normed space with p = 1, then there is an operator structure on X, such that M1,n (X) = S1 [X] where Sn,1 [X] is the finite dimentional version of S1 [X]. For p...
In the first part of this work, we establish some general properties of dual algebras and of direct integral dual algebras. In the second part, we give a complete description of singly generated uniform dual algebras of operators.
Let 𝓛 be a 𝒥-subspace lattice on a Banach space X and Alg 𝓛 the associated 𝒥-subspace lattice algebra. Assume that δ: Alg 𝓛 → Alg 𝓛 is an additive map. It is shown that δ satisfies δ(AB + BA) = δ(A)B + Aδ(B) + δ(B)A + Bδ(A) for any A,B ∈ Alg 𝓛 with AB + BA = 0 if and only if δ(A) = τ(A) + δ(I)A for all A, where τ is an additive derivation; if X is complex with dim X ≥ 3 and if δ is linear, then δ satisfies δ(AB + BA) = δ(A)B + Aδ(B) + δ(B)A + Bδ(A) for any A,B ∈ Alg 𝓛 with AB + BA = I if...
In general, little is known about the lattice of closed ideals in the Banach algebra ℬ(E) of all bounded, linear operators on a Banach space E. We list the (few) Banach spaces for which this lattice is completely understood, and we give a survey of partial results for a number of other Banach spaces. We then investigate the lattice of closed ideals in ℬ(F), where F is one of Figiel's reflexive Banach spaces not isomorphic to their Cartesian squares. Our main result is that this lattice is uncountable....
We establish interpolation properties under limiting real methods for a class of closed ideals including weakly compact operators, Banach-Saks operators, Rosenthal operators and Asplund operators. We show that they behave much better than compact operators.
In this paper, we introduce and study the notion of completely bounded sets ( for short) for compact, non-abelian groups G. We characterize sets in terms of completely bounded multipliers. We prove that when G is an infinite product of special unitary groups of arbitrarily large dimension, there are sets consisting of representations of unbounded degree that are sets for all p < ∞, but are not for any p ≥ 4. This is done by showing that the space of completely bounded multipliers...