convergence of minimizers of a Ginzburg-Landau functional.
We prove the partial -regolarity up to the free boundary of the -harmonic maps which minimize the -energy .
The story of the theory of Caccioppoli sets is presented, together with some information about Renato Caccioppoli’s life. The fundamental contributions of Ennio De Giorgi to the theory of Caccioppoli sets are sketched. A list of applications of Cacciopoli sets to the calculus of variations is finally included.
MSC 2010: 49K05, 26A33We give a proper fractional extension of the classical calculus of variations. Necessary optimality conditions of Euler-Lagrange type for variational problems containing both classical and fractional derivatives are proved. The fundamental problem of the calculus of variations with mixed integer and fractional order derivatives as well as isoperimetric problems are considered.
We study integrals of the form , where , is continuous and is a -form. We introduce the appropriate notions of convexity, namely ext. one convexity, ext. quasiconvexity and ext. polyconvexity. We study their relations, give several examples and counterexamples. We finally conclude with an application to a minimization problem.
Las propiedades geométricas del conjunto factible del dual de un problema semiinfinito lineal son análogas a las correspondientes para el caso finito. En este trabajo mostramos cómo, a partir de la caracterización algebraica de vértices y direcciones extremas, se consigue la correspondiente para aristas infinitas, estableciéndose así las bases para una extensión del método simplex a programas semiinfinitos lineales.