Caratterizzazione dei -limiti d'ostacoli unilaterali
In this paper we complete the characterization of those , and such that is limit of a sequence of obstacles where
In this paper we complete the characterization of those , and such that is limit of a sequence of obstacles where
In this paper, we are concerned with a civil engineering application of optimization, namely the optimal design of a loaded beam. The developed optimization model includes ODE-type constraints and chance constraints. We use the finite element method (FEM) for the approximation of the ODE constraints. We derive a convex reformulation that transforms the problem into a linear one and find its analytic solution. Afterwards, we impose chance constraints on the stress and the deflection of the beam....
We study some problems of optimal distribution of masses, and we show that they can be characterized by a suitable Monge-Kantorovich equation. In the case of scalar state functions, we show the equivalence with a mass transport problem, emphasizing its geometrical approach through geodesics. The case of elasticity, where the state function is vector valued, is also considered. In both cases some examples are presented.
In this work we consider a solid body constituted by a nonhomogeneous elastoplastic material, submitted to a density of body forces and a density of forces acting on the boundary where the real is the loading parameter. The problem is to determine, in the case of an unbounded convex of elasticity, the Limit load denoted by beyond which there is a break of the structure. The case of a bounded convex of elasticity is done in [El-Fekih and Hadhri, RAIRO: Modél. Math. Anal. Numér. 29 (1995)...
In this work we consider a solid body constituted by a nonhomogeneous elastoplastic material, submitted to a density of body forces and a density of forces acting on the boundary where the real is the loading parameter. The problem is to determine, in the case of an unbounded convex of elasticity, the Limit load denoted by beyond which there is a break of the structure. The case of a bounded convex of elasticity is done in [El-Fekih and Hadhri, RAIRO: Modél. Math. Anal. Numér. 29 (1995)...
Refining the variational method introduced in Azé et al. [Nonlinear Anal. 49 (2002) 643-670], we give characterizations of the existence of so-called global and local error bounds, for lower semicontinuous functions defined on complete metric spaces. We thus provide a systematic and synthetic approach to the subject, emphasizing the special case of convex functions defined on arbitrary Banach spaces (refining the abstract part of Azé and Corvellec [SIAM J. Optim. 12 (2002) 913-927], and the characterization...
Refining the variational method introduced in Azé et al. [Nonlinear Anal. 49 (2002) 643-670], we give characterizations of the existence of so-called global and local error bounds, for lower semicontinuous functions defined on complete metric spaces. We thus provide a systematic and synthetic approach to the subject, emphasizing the special case of convex functions defined on arbitrary Banach spaces (refining the abstract part of Azé and Corvellec [SIAM J. Optim. 12 (2002) 913-927], and the characterization...
We show the equivalence of some different definitions of p-superharmonic functions given in the literature. We also provide several other characterizations of p-superharmonicity. This is done in complete metric spaces equipped with a doubling measure and supporting a Poincaré inequality. There are many examples of such spaces. A new one given here is the union of a line (with the one-dimensional Lebesgue measure) and a triangle (with a two-dimensional weighted Lebesgue measure). Our results also...
2000 Mathematics Subject Classification: 90C26, 90C20, 49J52, 47H05, 47J20.In this paper we obtain some simple characterizations of the solution sets of a pseudoconvex program and a variational inequality. Similar characterizations of the solution set of a quasiconvex quadratic program are derived. Applications of these characterizations are given.
In this paper we present different regularity conditions that equivalently characterize various ɛ-duality gap statements (with ɛ ≥ 0) for constrained optimization problems and their Lagrange and Fenchel-Lagrange duals in separated locally convex spaces, respectively. These regularity conditions are formulated by using epigraphs and ɛ-subdifferentials. When ɛ = 0 we rediscover recent results on stable strong and total duality and zero duality gap from the literature.