Existence of regular solutions for a one-dimensional simplified perfect-plastic problem with a unilateral gradient constraint.
In this paper we examine nonlinear periodic systems driven by the vectorial -Laplacian and with a nondifferentiable, locally Lipschitz nonlinearity. Our approach is based on the nonsmooth critical point theory and uses the subdifferential theory for locally Lipschitz functions. We prove existence and multiplicity results for the “sublinear” problem. For the semilinear problem (i.e. ) using a nonsmooth multidimensional version of the Ambrosetti-Rabinowitz condition, we prove an existence theorem...
In this paper we establish the existence of nontrivial solutions to with superlinear in .
In this paper, which is an extension of [4], we first show the existence of solutions to a class of Min Sup problems with linked constraints, which satisfy a certain property. Then, we apply our result to a class of weak nonlinear bilevel problems. Furthermore, for such a class of bilevel problems, we give a relationship with appropriate d.c. problems concerning the existence of solutions.
Applying two three critical points theorems, we prove the existence of at least three anti-periodic solutions for a second-order impulsive differential inclusion with a perturbed nonlinearity and two parameters.