Least regret control, virtual control and decomposition methods
"Least regret control" consists in trying to find a control which "optimizes the situation" with the constraint of not making things too worse with respect to a known reference control, in presence of more or less significant perturbations. This notion was introduced in [7]. It is recalled on a simple example (an elliptic system, with distributed control and boundary perturbation) in Section 2. We show that the problem reduces to a standard optimal control problem for augmented state equations. On...
These lectures will focus on those properties of maximal monotone operators which are valid in arbitrary real Banach spaces.
In the presented paper we apply the theory of Lepage forms on jet prolongations of fibred manifold with one-dimensional base to the relativistic mechanics. Using this geometrical theory, we obtain and discuss some well-known conservation laws in their general form and apply them to a concrete physical example.
We find conditions, in multi-objective convex programming with nonsmooth functions, when the sets of efficient (Pareto) and properly efficient solutions coincide. This occurs, in particular, when all functions have locally flat surfaces (LFS). In the absence of the LFS property the two sets are generally different and the characterizations of efficient solutions assume an asymptotic form for problems with three or more variables. The results are applied to a problem in highway construction, where...