Phenomena of compensation and estimates for partial differential equations.
Bref survol du théorème de non-plongement de J. Cheeger et B. Kleiner pour le groupe d’Heisenberg dans .
An optimal control problem governed by a bilinear elliptic equation is considered. This problem is solved by the sequential quadratic programming (SQP) method in an infinite-dimensional framework. In each level of this iterative method the solution of linear-quadratic subproblem is computed by a Galerkin projection using proper orthogonal decomposition (POD). Thus, an approximate (inexact) solution of the subproblem is determined. Based on a POD a-posteriori error estimator developed by Tröltzsch...
An optimal control problem governed by a bilinear elliptic equation is considered. This problem is solved by the sequential quadratic programming (SQP) method in an infinite-dimensional framework. In each level of this iterative method the solution of linear-quadratic subproblem is computed by a Galerkin projection using proper orthogonal decomposition (POD). Thus, an approximate (inexact) solution of the subproblem is determined. Based on a POD...
The aim of the present work is to present a geometric formulation of higher order variational problems on arbitrary fibred manifolds. The problems of Engineering and Mathematical Physics whose natural formulation requires the use of second order differential invariants are classic, but it has been the recent advances in the theory of integrable non-linear partial differential equations and the consideration in Geometry of invariants of increasingly higher orders that has highlighted the interest...
Clarke’s generalized derivative is studied as a function on the Banach algebra Lip(X,d) of bounded Lipschitz functions f defined on an open subset X of a normed vector space E. For fixed and fixed the function is continuous and sublinear in . It is shown that all linear functionals in the support set of this continuous sublinear function satisfy Leibniz’s product rule and are thus point derivations. A characterization of the support set in terms of point derivations is given.
We prove uniformcontinuity of radiallysymmetric vector minimizers uA(x) = UA(|x|) to multiple integrals ∫BRL**(u(x), |Du(x)|) dx on a ballBR ⊂ ℝd, among the Sobolev functions u(·) in A+W01,1 (BR, ℝm), using a jointlyconvexlscL∗∗ : ℝm×ℝ → [0,∞] with L∗∗(S,·) even and superlinear. Besides such basic hypotheses, L∗∗(·,·) is assumed to satisfy also a geometrical constraint, which we call quasi − scalar; the simplest example being the biradial case L∗∗(|u(x)|,|Du(x)|). Complete liberty is given for L∗∗(S,λ)...
We describe an approach to variational problems, where the solutions appear as pointwise (finite-dimensional) minima for fixed t of the supplemented Lagrangian. The minimization is performed simultaneously with respect to the state variable x and ẋ, as opposed to Pontryagin's maximum principle, where optimization is done only with respect to the ẋ-variable. We use the idea of the equivalent problems of Carathéodory employing suitable (and simple) supplements to the original minimization problem....